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Abstract Algorithmic skeletons simplify software development: they abstract
typical patterns of parallelism and provide their efficient implementations, al-
lowing the application developer to focus on the structure of algorithms, rather
than on implementation details. This becomes especially important for modern
parallel systems with multiple Graphics Processing Units (GPUs) whose pro-
gramming is complex and error-prone, because state-of-the-art programming
approaches like CUDA and OpenCL lack high-level abstractions.

We define a new algorithmic skeleton for allpairs computations which oc-
cur in real-world applications, ranging from bioinformatics to physics. We de-
velop the skeleton’s generic parallel implementation for multi-GPU Systems
in OpenCL. To enable the automatic use of the fast GPU memory, we identify
and implement an optimized version of the allpairs skeleton with a customizing
function that follows a certain memory access pattern.

We use matrix multiplication as an application study for the allpairs skele-
ton and its two implementations and demonstrate that the skeleton greatly
simplifies programming, saving up to 90% of lines of code as compared to
OpenCL. The performance of our optimized implementation is up to 6.8 times
higher as compared with the generic implementation and is competitive to the
performance of a manually written optimized OpenCL code.
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1 Introduction

Algorithmic skeletons enable application developers to program parallel sys-
tems at a high level of abstraction [4]. Skeletons abstract recurring patterns of
parallel programming and provide efficient parallel implementations for these
patterns. The application developer uses skeletons by providing application-
specific code (so-called customizing function) which customizes the skeletons’
behavior. Skeletons thus allow the application developer to focus on the struc-
ture of the algorithms, rather than on their implementation details.

We develop SkelCL [17] – a skeleton library for programming modern
many-core architectures, especially systems with Graphics Processing Units
(GPUs). Programming these systems using the current low-level approaches
like CUDA [14] and OpenCL [13] is challenging: parallelism has to be expressed
explicitly by defining and executing parallel kernels, and memory manage-
ment is cumbersome, as data has to be moved manually to and from the GPU
memory. By providing skeletons on container data types, SkelCL alleviates
programming of systems with GPUs: parallelism is expressed implicitly, using
skeletons, and memory management is performed automatically by the SkelCL
implementation built on top of OpenCL. The especially tricky programming of
multi-GPU systems is greatly simplified by SkelCL’s data distribution mech-
anism which automatically moves data between multiple GPUs.

In this paper, we aim at allpairs computations which occur in a variety of
applications, ranging from matrix multiplication and pairwise Manhattan dis-
tance computations in bioinformatics [3] to N-Body simulations in physics [2].
These applications share a common computational pattern: for two sets of en-
tities, the same computation is performed independently for all pairs in which
entities from the first set are combined with entities from the second set.
Previous work discussed specific allpairs applications and their parallel imple-
mentations on multi-core CPUs [2], the Cell processor [18], and GPUs [3, 16];
it demonstrated that developing well-performing implementations for allpairs
is challenging, especially on GPU systems, as it requires exploiting their com-
plex memory hierarchy and assumes a deep knowledge of the target hardware
architecture.

The contributions and structure of this paper are as follows. To enable
application developers to efficiently use the allpairs computational pattern,
we formally define the allpairs skeleton and provide its generic parallel imple-
mentation in OpenCL (Section 2). We optimize the use of the GPU memory
hierarchy by implementing a specialized version of the allpairs skeleton with a
customizing function that follows a certain memory access pattern (Section 3).
We show that our implementations can be used for single- and multi-GPU sys-
tems (Section 4). We evaluate the runtime performance and the programming
effort of the allpairs skeleton within the SkelCL library, using matrix multipli-
cation as application study (Section 5). We discuss related work and conclude
in Section 6.
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2 The Allpairs Skeleton and its Implementation

We define the allpairs computation pattern for two sets of entities, each entity
represented by a vector of length d. Let the cardinality of the first set be n
and the cardinality of the second set be m. We model the first set as a n× d
matrix A and the second set as a m × d matrix B. The allpairs computation
yields an output matrix C of size n ×m as follows: ci,j = Ai ⊕ Bj , where Ai

and Bj are row vectors of A and B, correspondingly: Ai = [Ai,1, · · · , Ai,d],
Bj = [Bj,1, · · · , Bj,d], and ⊕ is a binary operator defined as vectors.

Definition 1 Let A be a n×d matrix, B be a m×d matrix, and C be a n×m
matrix, with their elements ai,j , bi,j , and ci,j respectively. The algorithmic
skeleton allpairs with customizing binary function ⊕ is defined as follows:

allpairs(⊕)



a1,1 · · · a1,d

...
...

an,1 · · · an,d

 ,

 b1,1 · · · b1,d
· ·· ·

bm,1 · · · bm,d


 def

=


c1,1 · · · c1,m

...
...

cn,1 · · · cn,m


where elements ci,j of the n×m matrix C are calculated as follows:

ci,j = [ai,1 · · · ai,d]⊕ [bj,1 · · · bj,d]

Figure 1(a) illustrates this definition: the element c2,3 of matrix C marked
as 3 is computed by combining the second row of A marked as 1 with the
third row of B marked as 2 using the binary operator ⊕. Figure 1(b) shows
the same computation with the transposed matrix B.
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Fig. 1 The allpairs computation. Left: element c2,3 ( 3 ) is computed by combining the

second row of A ( 1 ) with the third row of B ( 2 ) using the binary operator ⊕. Right: the
transposed matrix B is used.
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Let us consider two example applications which can be expressed by cus-
tomizing the allpairs skeleton with a particular function ⊕.

Example 1: The Manhattan distance (or L1 distance) is a measure of distance
which is used in many applications. In general, it is defined for two vectors, v
and w, of equal length d, as follows:

ManDist(v, w) =

d∑
k=1

|vk − wk| (1)

In [3], the so-called Pairwise Manhattan Distance (PMD) is studied as a funda-
mental operation in hierarchical clustering for data analysis. PMD is obtained
by computing the Manhattan distance for every pair of rows of a given matrix.
This computation for arbitrary matrix A can be expressed using the allpairs
skeleton customized with the Manhattan distance defined in (1):

PMD(A) = allpairs(ManDist) (A,A) (2)

The n×n matrix computed by the customized skeleton contains the Manhattan
distance for every pair of rows of the input n× d matrix A.

Example 2: Matrix multiplication is a basic linear algebra operation, which is
a building block of many scientific applications. An n×d matrix A is multiplied
by a d ×m matrix B, producing a n ×m matrix C = A × B whose element
ci,j is computed as the dot product of the ith row of A with the jth column
of B. The dot product of two vectors a and b of length d is computed as:

dotProduct(a, b) =

d∑
k=1

ak · bk (3)

The matrix multiplication can be expressed using the allpairs skeleton as:

A×B = allpairs(dotProduct)
(
A,BT

)
(4)

where BT is the transpose of matrix B. We will use the matrix multiplication
as our running example for the allpairs skeleton throughout the paper.

We develop the allpairs skeleton within the skeleton library SkelCL [17],
which is built on top of OpenCL and targets modern parallel systems with
multiple GPUs. Currently, five other skeletons are available in SkelCL: map,
zip, reduce, scan, and mapOverlap. Skeletons operate on container data types
(in particular vectors and matrices) which alleviate the memory management
of GPUs: data is copied automatically to and from GPUs, instead of manually
performing data transfers as required in OpenCL. For programming multi-
GPU systems, SkelCL offers the application programmer a data distribution
mechanism to specify how the data of a container is distributed among the
GPUs in the system. The container’s data can either be assigned to a single
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1 skelcl ::init();

2 Allpairs <float(float , float)> mm(

3 "float func( float_matrix_t a, float_matrix_t b) {\

4 float c = 0.0f;\

5 for (int i = 0; i < width(a); ++i) {\

6 c += getElementFromRow (a, i) * getElementFromCol (b, i); }\

7 return c; }");

8 Matrix <float > A(n, k); fill(A);

9 Matrix <float > B(k, m); fill(B);

10 Matrix <float > C = mm(A, B);

Listing 1 Matrix multiplication in SkelCL using the allpairs skeleton.

GPU, be copied to all GPUs, or be partitioned in equal blocks across the GPUs,
possibly with an overlap. If the data distribution is changed in the program,
the necessary data movements are done automatically by the system [17].

Listing 1 shows the SkelCL program for computing matrix multiplication
using the allpairs skeleton; the code follows directly from the mathematical for-
mulation (4). In the first line, the SkelCL library is initialized. Skeletons are im-
plemented as classes in SkelCL and customized by instantiating a new object,
like in line 2. The Allpairs class is implemented as a template class specified
with the data types of matrices involved in the computation (float(float,
float)). This way the implementation can ensure the type correctness by
checking the types of the arguments when the skeleton is executed in line 10.
The customizing function – specified as a string (line 3 – 7) – is passed to the
constructor. Data types for matrices (float matrix t in line 3) are defined
by the SkelCL implementation and used as arguments of helper functions for
accessing elements from both matrices (line 6). The transpose of matrix B
required by the definition (4) is implicitly performed by accessing elements
from the columns of B using the helper function getElementFromCol. After
initializing the two input matrices (line 8 and 9), the calculation is performed
in line 10.

In our SkelCL library, skeletons are implemented by translating them into
executable OpenCL code. Listing 2 shows the OpenCL kernel which is com-
bined with the given customizing function by the implementation of the all-
pairs skeleton. The customizing function (named func in Listing 1) is renamed
to match the name used in the function call in the implementation (USER FUNC

in Listing 2). In addition, the types used in the predefined OpenCL kernel
(TYPE LEFT, TYPE RIGHT, and TYPE OUT in Listing 2) are adjusted to match
the actual types of the elements used in the computation (in this case, all three
types are float). These modifications ensure that a valid OpenCL program
performing the allpairs calculation is constructed. This generated OpenCL
program is executed once for every element of the output matrix C. In lines
6 – 7, the implementation prepares variables (Am and Bm) of a predefined data
type (float matrix t) which encapsulate the matrices A and B and passes
them to the customizing function which is called in line 9.
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1 __kernel void allpairs(const __global TYPE_LEFT* A,

2 const __global TYPE_RIGHT* B,

3 __global TYPE_OUT* C,

4 int n, int d, int m) {

5 int col = get_global_id (0); int row = get_global_id (1);

6 float_matrix_t Am; Am.data = A; Am.width = d; Am.row = row;

7 float_matrix_t Bm; Bm.data = B; Bm.width = m; Bm.col = col;

8 if (row < n && col < m)

9 C[row * m + col] = USER_FUNC(Am, Bm); }

Listing 2 Generic OpenCL kernel used in the implementation of the allpairs skeleton.

To achieve high performance, skeleton implementations must efficiently
exploit the complex memory hierarchy of multi-GPU architectures. There are
two main types of memory in OpenCL: global and local memory. The global
memory is typically large but slow; the local memory is small but fast and
has similar performance as caches in traditional systems, but has to be pro-
grammed manually. On modern GPUs, accesses to the global memory are very
expensive, taking up to 800 processor cycles, as compared to only few cycles
required to access the local memory [14].

The generic implementation of the allpairs skeleton in Listing 2 makes no
assumption about the order in which the customizing function (USER FUNC)
accesses the elements of its two input vectors. In this general case, we cannot
assume that the two vectors fit entirely into the restricted GPU local memory.
Therefore, we have to use only the global memory in the generic implementa-
tion. To improve our implementation of the allpairs skeleton, we restrict the
memory access pattern of the customizing function in the next section.

3 The Specialized Allpairs Skeleton

In this section, we first analyze the memory access pattern of the matrix
multiplication and then observe that this pattern can also be found in some
other allpairs computations. We, therefore, define a specialized version of the
allpairs skeleton, which is suitable for applications having this pattern, and
show how it can be implemented more efficiently than the generic skeleton.

3.1 The memory access pattern of the matrix multiplication

Figure 2 shows the memory access pattern of the matrix multiplication for
4 × 4 matrices. To compute the element R of the result matrix C, the first
row of matrix A and the first column of matrix B are needed. In the skeleton-
based code, these two vectors are used by the customizing function (which is
the dot product) for pairwise computations: the two elements marked as 1
are multiplied and the intermediate result is stored; then, the next elements
(marked as 2 ) are multiplied and the result is added to the intermediate re-
sult, and so forth. Let us estimate the number of global memory accesses for
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Fig. 2 Memory access pattern of the matrix multiplication A×B = C.

computing an element of the matrix multiplication in the generic implemen-
tation (Listing 2). One global memory read access for every element of both
input vectors is performed, and a single global memory write access is required
to write the result into the output matrix. Therefore, n ·m · (d+ d+ 1) global
memory accesses are performed in total, where n and m are the height and
width of matrix C and d is the width of A and the height of B.

Obviously, the customizing function of the pairwise Manhattan distance
(Example 1 in Section 2) follows the same memory access pattern as matrix
multiplication. To find a common representation for a customizing function
with this pairwise access pattern, we describe it as a combination of two well-
known algorithmic skeletons: zip and reduce.

The zip skeleton combines two input vectors by applying its customizing
function (�) pairwise, producing the result vector:

zip (�) [a1 · · · an] [b1 · · · bn] = [a1 � b1 · · · an � bn]

The reduce skeleton transforms an input vector into a scalar value by re-
peatedly applying its binary associative customizing operator (⊕):

reduce (⊕) [a1 · · · an] = a1 ⊕ a2 ⊕ · · · ⊕ an

It is possible to sequentially compose these two customized skeletons. For
two functions f : X → Y and g : Y → Z, the sequential composition denoted
by g ◦ f : X → Z means that f is applied first and then g is applied to the
return value of f as input: (g ◦ f)(x) = g(f(x)). Our customized skeletons are
functions with types that allow their composition as follows:

(reduce (⊕) ◦ zip (�)) [a1 · · · an] [b1 · · · bn] =

reduce (⊕) (zip (�) [a1 · · · an] [b1 · · · bn]) = (a1 � b1)⊕ · · · ⊕ (an � bn)

This composition of the two customized skeletons yields a function which takes
two input vectors and produces a single scalar value:

zipReduce (⊕,�) a b = (reduce (⊕) ◦ zip (�)) a b (5)
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Following the definition of zipReduce, we can express the customizing func-
tion of the Manhattan distance as follows. We use the binary operator a	 b =
|a − b| as customizing function for zip, and addition as customizing function
for the reduce skeleton:

ManDist(a, b) =

n∑
i=1

|ai − bi| = (a1 	 b1) + · · ·+ (an 	 bn)

= zipReduce(+,	) [a1 · · · an] [b1 · · · bn]

Similarly, we can express the dot product (which is the customizing func-
tion of matrix multiplication) as a zip-reduce composition, by using multipli-
cation for customizing zip and addition for customizing the reduce skeleton:

dotProduct(a, b) =

n∑
i=1

ai · bi = (a1 · b1) + · · ·+ (an · bn)

= zipReduce(+, ·) [a1 · · · an] [b1 · · · bn]

We can now specialize the generic Definition 1 by employing the sequential
composition of the customized reduce and zip skeletons for customizing the
allpairs skeleton. From here on, we refer to this specialization as the allpairs
skeleton customized with zip-reduce.

While not every allpairs computation can be expressed using the specializa-
tion, many real-world problems can. In addition to the matrix multiplication
and the pairwise Manhattan distance examples are the pairwise computation
of the Pearson correlation coefficient [3] and estimation of Mutual Informa-
tions [5]. The composition of zip and reduce is well known in the functional pro-
gramming world. Google’s popular MapReduce programming model has been
inspired by a similar composition of the map and reduce skeletons; see [12] for
the relation of MapReduce to functional programming.

Listing 3 shows how the matrix multiplication can be programmed in
SkelCL using the allpairs skeleton customized with zip-reduce. In line 1, the
SkelCL library is initialized. In lines 2 and 3, the zip skeleton is defined using
multiplication as customizing function and in lines 4 and 5, the reduce skeleton
is customized with addition. These two customized skeletons are passed to the
allpairs skeleton on its creation in line 6. The implementation of the allpairs

1 skelcl ::init();

2 Zip <float(float , float)> mult

3 ("float func(float x, float y) { return x*y; }");

4 Reduce <float(float , float)> sum_up

5 ("float func(float x, float y) { return x+y; }");

6 Allpairs <float(float , float)> mm(sum_up , mult);

7 Matrix <float > A(n, d); fill(A);

8 Matrix <float > B(d, m); fill(B);

9 Matrix <float > C = mm(A, B);

Listing 3 Matrix multiplication in SkelCL using the specialized allpairs skeleton.
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skeleton then uses the two customizing functions of zip and reduce to generate
the OpenCL kernel performing the allpairs computation. In line 9, the skele-
ton is executed taking two input matrices and producing the output matrix.
Note that we create objects of the same Allpairs class when using the generic
allpairs implementation (Listing 2 line 2) and the specialized implementation
(Listing 3 line 6). Depending on which of the overloaded constructors is used,
either the generic or the specialized implementation is created.

3.2 Implementation of the specialized allpairs skeleton

By expressing the customizing function of the allpairs skeleton as a zip-reduce
composition, we provide additional semantic information about the memory
access pattern of the customizing function to the skeleton implementation,
thus allowing for improving the performance. Our idea of optimization is based
on the OpenCL programming model that organizes work-items (i. e., threads
executing a kernel) in work-groups which share the same GPU local memory.
By loading data needed by multiple work-items of the same work-group into
the local memory, we can avoid repetitive accesses to the global memory.

For the allpairs skeleton with the zip-reduce customizing function, we can
adopt the implementation schema for GPUs [16], as shown in Figure 3. We
allocate two arrays in the local memory, one of size r × k (r = 2, k = 3 in
Figure 3) for elements of A and one of size k×c (c = 3 in Figure 3) for elements
of B. A work-group consisting of c× r work-items computes s blocks (s = 2 in
Figure 3) of the result matrix C. In Figure 3, the two blocks marked as 7 and
8 are computed by the same work-group as follows. In the first iteration, the

elements of blocks 1 and 2 are loaded into the local memory and combined
following the zip-reduce pattern. The obtained intermediate result is stored
in block 7 . Then, the elements of block 3 are loaded and combined with
the elements from 2 which still reside in the local memory. The intermediate
result is stored in block 8 . In the second iteration, the algorithm continues in
the same manner with blocks 4 , 5 , and 6 , but this time, the elements of the
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3 6

k

r
r · s

d

B
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d
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Fig. 3 Implementation schema of the specialized allpairs skeleton.
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blocks are also combined with the intermediate results of the first iteration,
which are stored in blocks 7 and 8 . The advantage of computing multiple
blocks by the same work-group is that we keep the elements of B in the local
memory when computing the intermediate results, i. e., we do not reload block
2 twice for the computation of blocks 7 and 8 .

Every element loaded from the global memory is used by multiple work-
items: e. g., the upper left element of block 1 is loaded only once from the
global memory, but used three times: in the computation of the upper left,
upper middle, and upper right elements of 7 . In general, every element loaded
from A is reused c times, and every element from B is reused r ·s times. As the
intermediate results are stored in the global memory of matrix C, we perform
two additional memory accesses (read/write) for every iteration, i. e., 2 · dk in
total. Therefore, instead of n ·m · (d+d+ 1) global memory accesses necessary
when not using the local memory, only n ·m · ( d

r·s + d
c + 2 · dk ) global memory

accesses are performed. By increasing the parameters s and k, or the number
of work-items in a work-group (c and r), more global memory accesses can be
saved. However, the work-group size is limited by the GPU hardware. While
the parameters can be chosen independently of the matrix sizes, we have to
consider the amount of available local memory. [16] discusses how suitable
parameters can be found by performing runtime experiments.

4 The Allpairs Skeleton using Multiple GPUs

The allpairs skeleton can be efficiently implemented not only on systems with a
single GPU, but on multi-GPU systems as well. The SkelCL library provides
four data distributions which specify how a container data type (vector or
matrix) is distributed among multiple GPUs [17]. We use two of them in
our multi-GPU implementation of the allpairs skeleton, as shown in Figure 4:
Matrix B is copy distributed, i. e., it is copied entirely to all GPUs in the
system. Matrix A and C are block distributed, i. e., they are row-divided into
as many equally-sized blocks as GPUs are available; each block is copied to its

A

B

C

GPU 1

GPU 2

Fig. 4 Data distributions used for a system with two GPUs: matrices A and C are block
distributed, matrix B is copy distributed.
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corresponding GPU. Following these distributions, each GPU computes one
block of the result matrix C. In the example with two GPUs shown in Figure 4,
the first two rows of C are computed by GPU 1 and the last two rows by GPU
2. The allpairs skeleton automatically selects these distributions; therefore, no
changes to the already discussed implementations of the matrix multiplication
are necessary for using multiple GPUs.

5 Experimental Evaluation

We use matrix multiplication as an example to evaluate our allpairs skeleton
implementations regarding programming effort and performance.

5.1 Implementations of matrix multiplication

We compare six different implementations of the matrix multiplication:

1. the OpenCL implementation from [11] without optimizations,
2. the optimized OpenCL implementation from [11] using GPU local memory,
3. the optimized BLAS implementation by AMD [1] written in OpenCL,
4. the optimized BLAS implementation by NVIDIA [15] written in CUDA,
5. the implementation using the generic allpairs skeleton,
6. the implementation using the allpairs skeleton customized with zip-reduce.

1. OpenCL implementation The kernel of the first, unoptimized OpenCL im-
plementation from [11] is shown in Listing 4.

1 __kernel void mm(__global float* A, __global float* B,

2 __global float* C, int m, int d, int n) {

3 int row = get_global_id (0); int col = get_global_id (1);

4 float sum = 0.0f;

5 for (int k = 0; k < d; k++)

6 sum += A[row * d + k] * B[k * n + col];

7 C[row * n + col] = sum; }

Listing 4 OpenCL kernel of the matrix multiplication without optimizations [11].

2. Optimized OpenCL implementations The kernel of the optimized OpenCL
implementation from [11] using local memory is shown in Listing 5. Two fixed-
sized arrays of local memory are allocated in lines 4 and 5. Matrix multipli-
cation is carried out in the loop starting in line 9. In each iteration, data is
loaded into the local memory (lines 10 and 11) before it is used in the com-
putation in line 14. Note that two synchronization barriers are required (lines
12 and 15) to ensure that the data is fully loaded into the local memory and
that the data is not overwritten while other work-items are still using it. Both
OpenCL implementations 1. and 2. from [11] are only capable of performing
matrix multiplication for square matrices.
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1 #define TILE_WIDTH 16

2 __kernel void mm(__global float* A, __global float* B,

3 __global float* C, int m, int d, int n) {

4 __local float Al[TILE_WIDTH ][ TILE_WIDTH ];

5 __local float Bl[TILE_WIDTH ][ TILE_WIDTH ];

6 int row = get_global_id (0); int col = get_global_id (1);

7 int l_row = get_local_id (0); int l_col = get_local_id (1);

8 float sum = 0.0f;

9 for (int m = 0; m < d / TILE_WIDTH; ++m {

10 Al[l_row ][ l_col] = A[row * d + (m * TILE_WIDTH + l_col)];

11 Bl[l_row ][ l_col] = B[(m * TILE_WIDTH + l_row) * d + col];

12 barrier(CLK_LOCAL_MEM_FENCE);

13 for (int k = 0; k < TILE_WIDTH; k++)

14 sum += Al[l_row][k] * Bl[k][l_col];

15 barrier(CLK_LOCAL_MEM_FENCE); }

16 C[row * n + col] = sum; }

Listing 5 OpenCL kernel of the optimized matrix multiplication using local memory [11].

3. BLAS implementation by AMD The implementation offered by AMD is
called clBLAS, written in OpenCL and is part of their Accelerated Parallel
Processing Math Libraries (APPML) [1].

4. BLAS implementation by NVIDIA The cuBLAS [15] is implemented using
CUDA and, therefore, can only be used on GPUs built by NVIDIA.

5. Generic allpairs skeleton Listing 1 in Section 2 shows the implementation
using the generic allpairs skeleton.

6. Allpairs skeleton customized with zip-reduce Listing 3 in Section 3 shows
the implementation using the allpairs skeleton customized with zip-reduce.

5.2 Programming effort

As the simplest criterion for programming effort, we use the program size in
lines of code (LoC). Figure 5 shows the number of LoCs required for each of
the six implementations. Table 1 presents the detailed numbers. We did not
count those LoCs which are not relevant for parallelization and are similar
in all six implementations, like initializing the input matrices with data and
checking the result for correctness. For every implementation, we distinguish
between CPU code and GPU code. For the OpenCL implementations, the
GPU code is the kernel definition, as shown in Listing 4 and Listing 5; the
CPU code includes the initialization of OpenCL, memory allocations, explicit
data transfer operations, and management of the execution of the kernel. For
the BLAS implementations, the CPU code contains the initialization of the
corresponding BLAS library, memory allocations, as well as a library call for
performing the matrix multiplication; no definition of GPU code is necessary,
as the GPU code is defined inside the library function calls. For the generic
allpairs skeleton (Listing 1), we count lines 1 – 2 and 8 – 10 as the CPU code,
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Fig. 5 Programming effort (Lines of Code) of all compared implementations.

and the definition of the customizing function in lines 3 – 7 as the GPU code.
For the allpairs skeleton customized with zip-reduce (Listing 3), lines 3 and 5
are the GPU code, while all other lines constitute the CPU code.

Both skeleton-based implementations are clearly the shortest, with 10 and
9 LoCs. The next shortest implementation is the cuBLAS implementation with
65 LoCs – 7 times longer than the SkelCL-based implementation. The other
three implementations require even 9 times more LoCs than the SkelCL-based
implementation.

Besides their length, the other implementations require the application de-
veloper to perform many low-level, error-prone tasks, like dealing with point-
ers or offset calculations. Furthermore, the skeleton-based implementations are
more general, as they can be used for arbitrary allpairs computations, while
the other four implementations perform matrix multiplication only.

Lines of Code

Implementation CPU GPU

OpenCL 77 7
Optimized OpenCL 71 17
cuBLAS 81 –
clBLAS 65 –
Generic allpairs

5 5
skeleton
Allpairs skeleton

7 2
with zip-reduce

Table 1 Lines of Code of all compared implementations.
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5.3 Runtime experiments

We performed our experiments with the six different implementations 1. – 6.
of matrix multiplication on two different computer systems with GPUs:

System A: An NVIDIA S1070 equipped with four NVIDIA Tesla GPUs, each
with 240 streaming processors and 4 GByte memory.

System B: An AMD Radeon HD 6990 graphics card containing two GPUs,
each with 1536 streaming processors and 1 GByte memory.

In all our experiments, we include the time of data transfers to and from
the GPU, i. e. the measured runtime consists of: 1) uploading the two input
matrices to the GPU; 2) performing the actual matrix multiplication; 3) down-
loading the computed result matrix.

System A using one GPU. Figure 6 shows the runtime in seconds of all six
implementations for different sizes of the matrices (note that for readability
reasons, all charts are scaled differently). For detailed numbers, see Table 2.

Clearly, the naive OpenCL implementation and the implementation using
the generic allpairs skeleton are the slowest, because both do not use the fast
GPU local memory, in contrast to all other implementations.

OpenCL Optimized OpenCL  cuBLAS clBLAS Generic allpairs skeleton  Allpairs skeleton with zip−reduce  
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Fig. 6 Runtime of different matrix multiplication implementations on the NVIDIA system
for different sizes for the matrices.

Runtimes in Seconds

Implementation
1024 2048 4096 8192 16384

×1024 ×2048 ×4096 ×8192 ×16384

OpenCL 0.122 0.791 5.778 48.682 472.557
Optimized OpenCL 0.017 0.105 0.752 5.683 51.337
cuBLAS 0.012 0.059 0.387 2.863 22.067
clBLAS 0.061 0.246 1.564 11.615 90.705
Generic allpairs

0.121 0.792 5.782 48.645 471.235
skeleton
Allpairs skeleton

0.024 0.156 1.134 8.742 68.544
with zip-reduce

Table 2 Detailed runtime results for all implementations on the NVIDIA system.
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The implementation using the allpairs skeleton customized with zip-reduce
performs between 5.0 and 6.8 times faster than the implementation using the
generic allpairs skeleton, but is 33% slower on 16384×16384 matrices than the
optimized OpenCL implementation using local memory. However, the latter
implementation can only be used for square matrices and, therefore, omits
many conditional statements and boundary checks.

Not surprisingly, cuBLAS by NVIDIA is the fastest of all implementations,
as it is highly tuned specifically for NVIDIA GPUs using CUDA. The clBLAS
implementation by AMD using OpenCL performs not as well: presumably, it
is optimized for AMD GPUs and performs poorly on other hardware. Our
optimized allpairs skeleton implementation outperforms the clBLAS imple-
mentation for all matrix sizes tested.

System B using one GPU. Figure 7 shows the runtime in seconds for five of
the six implementations for different sizes of the matrices. Detailed numbers
can be found in Table 3. We could not use the NVIDIA-specific cuBLAS
implementation as it does not work on the AMD GPU.

For bigger matrices, the slowest implementations are, again, the unop-
timized OpenCL implementation and the implementation using the generic
allpairs skeleton.

OpenCL Optimized OpenCL  clBLAS Generic allpairs skeleton  Allpairs skeleton with zip−reduce  
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Fig. 7 Runtime of all compared implementations for a matrix multiplication on the AMD
system using one GPU and different sizes for the matrices.

Runtimes in Seconds

Implementation
512 1024 2048 4096 8192

×512 ×1024 ×2048 ×4096 ×8192

OpenCL 0.008 0.046 0.284 2.178 17.098
Optimized OpenCL 0.006 0.023 0.111 0.743 5.569
clBLAS 0.113 0.120 0.143 0.329 2.029
Generic allpairs

0.007 0.038 0.278 2.151 16.983
skeleton
Allpairs skeleton

0.005 0.023 0.141 1.025 7.842
with zip-reduce

Table 3 Detailed runtime results for all implementations on the AMD system.
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The optimized OpenCL implementation and the allpairs skeleton customized
with zip-reduce perform similarly. For matrices of size 8192 × 8192, the opti-
mized OpenCL implementation is about 30% faster.

The clBLAS implementation performs very poorly for small matrices, but is
clearly the fastest implementation for bigger matrices. Similar to the cuBLAS
implementation on the NVIDIA hardware, it is not surprising that the imple-
mentation by AMD performs very well on their own hardware.

System A using multiple GPUs. Figure 8 shows the runtime behavior for both
allpairs skeleton-based implementations when using up to four GPUs of our
multi-GPU system. The other four implementations are not able to handle
multiple GPUs and would have to be specially rewritten for such systems. We
observe a good scalability of our skeleton-based implementations, achieving
speedups between 3.09 and 3.93 when using four GPUs. Detailed numbers can
be found in Table 4. For the matrices of size 16384 × 16384, performance is
also provided in GFlops; to compute this value we excluded the data-transfer
time (as usually done in related work) for a better comparison.
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Fig. 8 Runtime of the allpairs based implementations using multiple GPUs.

Runtimes in Seconds GFlops

Implementation
Number 4096 8192 16384 16384
of GPUs ×4096 ×8192 ×16384 ×16384

Generic allpairs
skeleton

1 GPU 5.772 48.645 471.328 18.72
2 GPUs 2.940 24.495 236.628 37.43
3 GPUs 2.000 16.532 158.611 56.17
4 GPUs 1.527 12.540 119.786 74.90

Allpairs skeleton
with zip-reduce

1 GPU 1.137 8.740 68.573 130.93
2 GPUs 0.613 4.588 35.294 262.18
3 GPUs 0.461 3.254 24.447 392.87
4 GPUs 0.368 2.602 19.198 523.91

Table 4 Detailed runtime of the allpairs based implementations using multiple GPUs. For
the matrices of size 16384 × 16384 the results are also shown in GFlops.
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6 Conclusion and Related Work

Considerable theoretical as well as practical research has been conducted in
the field of algorithmic skeletons since its introduction in the late 1980s. Due
to lack of space, we refer to [9] for an overview of skeletal programming and [8]
for a recent survey of skeleton libraries for clusters and multi-core CPUs. Our
contribution to skeletal programming is the introduction and efficient imple-
mentation of a new algorithmic skeleton for performing allpairs computations.
As other skeletons, the allpairs skeleton can be used as a basic building block
by application developers who do not have to be experts in GPU computing
or parallel programming in general.

In previous work, efficient parallel implementations of allpairs computa-
tions on modern parallel processors were studied (e. g., multi-core CPUs [2],
the Cell processor [18], and GPUs [3]) in the context of specific applications. In
contrast to [16], which presents an efficient implementation scheme of allpairs
computations for GPUs, we abstract the computation as an algorithmic skele-
ton and offer its efficient implementation to application developers as part of
the SkelCL skeleton library.

The evaluation of the programming effort shows that the allpairs skeleton
allows to express many applications considerably shorter and at a higher level
of abstraction, as compared to using OpenCL or library implementations like
BLAS. The performance comparison shows that by making information about
the memory access pattern available to the implementation, we can consider-
ably improve the performance by efficiently using the fast GPU local memory.

Several current approaches address simplifying GPU programming. As
SkelCL, also SkePU [6] and Muesli [7] are skeleton libraries targeting multi-
GPU systems. In contrast to our work, which is based entirely on the portable
OpenCL, Muesli is implemented using NVIDIA’s CUDA and SkePU is imple-
mented with multiple back-ends which restrict the application developer to the
back-ends’ smallest common set of functions. While SkelCL can be used for
programming multiple OpenCL-capable GPUs, the CUDA-based Thrust [10]
library simplifies programming only for a single NVIDIA GPU.

In future work we will further study the allpairs skeleton, and explore more
real-world applications, like n-body simulations, to evaluate the generality
and applicability of the allpairs skeleton. Currently the implementation of the
specialized allpairs skeleton in SkelCL is customized with two skeletons: one
zip and one reduce skeleton. In future work we want to relax this and allow
for arbitrary nesting of skeletons in SkelCL.
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