
Noname manuscript No.
(will be inserted by the editor)

SkelCL: A High-Level Extension of OpenCL
for Multi-GPU Systems

Michel Steuwer · Sergei Gorlatch

Received: date / Accepted: date

The final publication is available at Springer via
http://dx.doi.org/10.1007/s11227-014-1213-y.

Abstract Application development for modern high-performance systems with
Graphics Processing Units (GPUs) currently relies on low-level programming
approaches like CUDA and OpenCL, which leads to complex, lengthy and
error-prone programs. We present SkelCL – a high-level programming ap-
proach for systems with multiple GPUs and its implementation as a library on
top of OpenCL. SkelCL makes three main enhancements to the OpenCL stan-
dard: 1) memory management is simplified using parallel container data types
(vectors and matrices); 2) an automatic data (re)distribution mechanism al-
lows for implicit data movements between GPUs and ensures scalability when
using multiple GPUs; 3) computations are conveniently expressed using par-
allel algorithmic patterns (skeletons). We demonstrate how SkelCL is used to
implement parallel applications and we report experimental evaluation of our
approach in terms of programming effort and performance.

Keywords Parallel programming · GPU programming · OpenCL · Algorith-
mic skeletons · SkelCL · Many-cores

1 Introduction

Modern high-performance computer systems become increasingly heteroge-
neous as they comprise in addition to multi-core processors (CPUs), also
Graphics Processing Units (GPUs) and other so-called accelerators. The state-
of-the-art application programming for systems with GPUs is cumbersome
and error-prone, because GPUs are programmed using explicit, low-level pro-
gramming approaches like CUDA [11] or OpenCL [8]. These approaches re-
quire the programmer to explicitly manage GPU’s memory (including memory

University of Muenster, Germany
E-mail: michel.steuwer@wwu.de and E-mail: gorlatch@uni-muenster.de

http://dx.doi.org/10.1007/s11227-014-1213-y

2 Michel Steuwer, Sergei Gorlatch

(de)allocations, and data transfers to/from the system’s main memory), and
explicitly specify parallelism in the computation. This leads to lengthy, com-
plicated and, thus, error-prone code. For multi-GPU systems, programming
with CUDA and OpenCL is even more complex as an explicit implementation
of data exchange between the GPUs and disjoint management of each GPU’s
memory are required, including low-level pointer and offset calculations.

SkelCL (Skeleton Computing Language) is our high-level programming ap-
proach for parallel systems with multiple GPUs which is based on the OpenCL
standard and enhances it with three high-level mechanisms:

1) parallel container data types: collections of data (in particular, vectors and
matrices) that are managed automatically on all GPUs in the system;

2) data (re)distributions: a mechanism for specifying in the application pro-
gram suitable data distributions and re-distributions among the GPUs,
which are then automatically enforced at runtime;

3) parallel skeletons: pre-implemented high-level patterns of parallel compu-
tation and communication which can be customized to express application-
specific parallelism, and combined to a large high-level code.

2 SkelCL: Programming Model and Library

We develop SkelCL [14] as an extension of the standard OpenCL program-
ming model [8] which covers multi-core CPUs, GPUs, and other accelerators.
SkelCL is fully compatible with OpenCL: arbitrary parts of a SkelCL code
can be written in OpenCL, without influencing program’s correctness. The
main program is executed sequentially on the CPU – called the host – and
computations are offloaded to GPUs – called devices.

2.1 Parallel Container Data Types

SkelCL offers the application developer two container classes – vector and
matrix – which are transparently accessible by both, host and devices, i. e. the
CPU and the GPUs and which abstract one- and two-dimensional contiguous
memory areas, correspondingly. When a container is created on the CPU,
memory is allocated on the GPUs automatically; when a container on the
CPU is deleted, its memory on the GPUs is freed automatically. In a SkelCL
program, a vector object can be created and filled as in the following example:

Vector<int> vec(size);

for (int i = 0; i < vec.size(); ++i){ vec[i] = i; }

The main advantage of the container data types in SkelCL as compared
with OpenCL is that the necessary data transfers between the CPU and GPUs
are performed implicitly. Before computing, the SkelCL system ensures that all
input containers’ data is available on all participating GPUs. This may result
in implicit (automatic) data transfers from the CPU to GPU memory, which

SkelCL: Enhancing OpenCL 3

in OpenCL would require explicit programming. Similarly, before accessing
data on the CPU, SkelCL ensures that this data on the CPU is up-to-date by
performing necessary data transfers implicitly and automatically. Thus, the
container classes shield the programmer from low-level memory operations.

2.2 Data Distribution on Multiple GPUs

In applications working on containers, GPUs often access disjoint parts of
input data. To simplify the specification of containers’ partitionings across
multiple GPUs, SkelCL implements the distribution mechanism that describes
how a container is distributed among the available GPUs. It allows the pro-
grammer to abstract from managing memory ranges across multiple GPUs:
the programmer views a distributed container as a self-contained entity.

Four kinds of distribution are currently available in SkelCL: single, copy,
block, and overlap; see Fig. 1 for illustration. With single distribution, matrix’s
whole data is stored on a single GPU (the first GPU if not specified otherwise);
copy copies matrix’s entire data to each available GPU; block partitions matrix
in disjoint chunks across GPUsdistribution, each GPU stores a contiguous,
disjoint chunk of the matrix; overlap stores on each GPU the chunk together
with one or several rows of the neighboring chunk.

The application developer can set the distribution of containers (vectors
and matrices) explicitly, otherwise every skeleton selects a default distribution
for its input and output containers. Container’s distribution can be changed
at runtime: this implies data exchanges between multiple GPUs and the CPU,
which are performed by the SkelCL implementation implicitly. Implementing
such data transfers in the standard OpenCL is a cumbersome task: data has
to be downloaded to the CPU before it is uploaded to the GPUs, including the
corresponding length and offset calculations; this results in a lot of low-level
code which becomes completely hidden when using SkelCL.

2.3 Basic Patterns of Parallelism (Skeletons)

In original OpenCL, computations are expressed as kernels which are executed
in a parallel manner on a GPU: the application developer must explicitly spec-
ify how many instances of a kernel are launched. In addition, kernels usually

CPU

GPUs0 1

(a) single

CPU

GPUs0 1

(b) copy

CPU

GPUs0 1

(c) block

CPU

GPUs0 1

(d) overlap

Fig. 1 Distributions of a matrix in SkelCL on a system with two GPUs.

4 Michel Steuwer, Sergei Gorlatch

take pointers to GPU memory as input and contain program code for read-
ing/writing single data items from/to memory.

To shield the application developer from these low-level programming is-
sues, SkelCL extends OpenCL by introducing high-level programming pat-
terns, called algorithmic skeletons [6]. Formally, a skeleton is a higher-order
function that executes in a pre-defined parallel manner on containers one or
more user-defined (so-called customizing) functions defined on primitive data,
while hiding the details of parallelism and communication from the user [6].

The current version of SkelCL provides six skeletons: map, zip, reduce,
scan, mapOverlap and allpairs. We start by illustrating some basic skeletons
semi-formally, with v, vl and vr denoting vectors of length n:

– The map skeleton applies a unary customizing function f to each element
of an input vector v, i. e.

map f [v1, v2, . . . , vn] = [f(v1), f(v2), . . . , f(vn)]

In a SkelCL program, a map skeleton is created as an object for a unary
function f , e. g. negation, like this:

Map<float(float)> neg("float func(float x){ return -x;}");

This map object can then be called as a function with a vector as argument:

resultVector = neg(inputVector);

The other basic skeletons are created and executed similarly. For brevity
we only show the formal definition for two more skeletons:

– The zip skeleton operates on two vectors vl and vr, applying a binary
customizing operator ⊕ pairwise:

zip (⊕) [vl1, . . . , vln] [vr1, . . . , vrn] = [vl1 ⊕ vr1, . . . , vln ⊕ vrn]

– The reduce skeleton computes a scalar value from a single vector using a
binary associative operator ⊕, i. e.

red (⊕) [v1, v2, . . . , vn] = v1 ⊕ v2 ⊕ · · · ⊕ vn

In SkelCL, rather than writing low-level kernels, the programmer cus-
tomizes suitable skeletons by providing application-specific functions; OpenCL
kernels are then generated and executed automatically by the library.

int main (int argc , char const* argv []) {

skelcl ::init(); /* initialize SkelCL */

/* create skeletons */

Reduce <float > sumUp("float func(float x,float y) {return x+y;}");

Zip <float > mult ("float func(float x,float y) {return x*y;}");

/* create and fill input vectors */

Vector <float > A(SIZE); fillVector(A.begin(), A.end());

Vector <float > B(SIZE); fillVector(B.begin(), B.end());

/* execute skeleton and fetch result */

Vector <float > C = sumUp(mult(A, B)); float c = C.getValue ();}

Listing 1 SkelCL program computing the dot product of two vectors.

SkelCL: Enhancing OpenCL 5

Listing 1 shows how a dot product of two vectors is implemented in SkelCL
using two of the basic skeletons. Here, the zip skeleton is customized by multi-
plication, and the reduce skeleton is customized by addition. For comparison,
an OpenCL-based implementation of dot product provided by NVIDIA in [11]
requires 68 lines of code (kernel: 9 lines, host program: 59 lines).

2.4 The MapOverlap Skeleton

Many numerical and image processing applications perform calculations for a
particular data element (e. g., a pixel) taking neighboring data elements into
account. We define in SkelCL a suitable skeleton on both vector and matrix
data type; we explain the details for the matrix data type.

The MapOverlap skeleton takes two parameters: a unary function f and
an integer d. It applies f to each element of an input matrix min while taking
the neighboring elements within the range [−d,+d] into account:

mout[i, j] = f

min[i− d, j − d] . . . min[i− d, j] . . . min[i− d, j + d]
...

...
...

min[i, j − d] . . . min[i, j] . . . min[i, j + d]
...

...
...

min[i+ d, j − d] . . . min[i+ d, j] . . . min[i+ d, j + d]

In the actual source code, the application developer provides the function

f which receives a pointer to the element in the middle, min[i, j].

Listing 2 shows a simple example of computing the sum of all direct neigh-
boring values using the MapOverlap skeleton. To access the elements of the
input matrix min, function get is provided by SkelCL. All indices are specified
relative to the middle element min[i, j]. In Listing 2, range is specified as d = 1,
therefore, only direct neighboring elements are accessed. Boundary checks are
performed at runtime by the get function. When accessing elements out of the
boundaries, e.g., the item in the top-left corner of the matrix accesses elements
above and left of it, the MapOverlap skeleton can be configured to handle this
in two possible ways: 1) a specified neutral value is returned; 2) the nearest
valid value inside the matrix is returned. In Listing 2, the first option is cho-
sen, with 0 as neutral value. An equivalent OpenCL implementation requires
at least twice as many lines of code, with pointer arithmetic, boundary checks
and index calculations for every memory access programmed explicitly.

MapOverlap <float(float)> m("float func(float* m_in){

float sum = 0.0f;

for (int i = -1; i < 1; ++i)

for (int j = -1; j < 1; ++i)

sum += get(m_in , i, j); return sum; }", 1, SCL_NEUTRAL , 0);

Listing 2 MapOverlap skeleton computing the sum of neightbors for every matrix element

6 Michel Steuwer, Sergei Gorlatch

3 Application Studies and Experiments

The SkelCL library was used to implemented multiple applications from the
fields of medical imaging, image processing and linear algebra. We present here:
1) the calculation of a Mandelbrot fractal, and 2) the Sobel edge detection.
Both SkelCL implementations are compared to OpenCL versions, regarding
programming effort (Lines of Code - LOC) and runtime performance.

3.1 Application Study: Mandelbrot Set

The Mandelbrot set calculation [10] is a time-consuming task which is often
used as a parallel benchmark: it is easily parallelizable as all pixels can be com-
puted simultaneously. SkelCL requires a single line of code for initialization
in the host code, whereas OpenCL requires a lengthy creation and initializa-
tion of different data structures, about 20 LoC. In OpenCL host code, several
API functions are called to load and build the kernel, pass arguments to it and
launch it using a specified work-group size. In SkelCL, the kernel is passed to a
newly created instance of the Map skeleton. A Vector of complex numbers rep-
resenting pixels of the Mandelbrot fractal, is passed to the Map skeleton upon
execution. Specifying the work-group size is mandatory in OpenCL, whereas
this is optional in SkelCL. The OpenCL-based implementation has in total 118
LoCs (kernel: 28 lines, host program: 90 lines) and is thus more than twice as
long as the SkelCL version with 57 lines (26, 31) (see Figure 2).

We run our implementations on a single Tesla T10 GPU with 240 streaming
processor cores to compute a Mandelbrot fractal of size 4096×3072 pixels.
In OpenCL two-dimensional work-groups of 16×16 are used; SkelCL uses its
default one-dimensional work-group size of 256. We observe that the OpenCL-
based implementation is faster by only 4% than the SkelCL version.

3.2 Application Study: Sobel Edge Detection

Listing 3 shows the sequential pseudo-code of the Sobel edge detection [9],
with omitted boundary checks for brevity. For computing an output value
out[i][j], the input value img[i][j] and the direct neighboring elements

30

0

10

20

Ru
nt

im
e

in
Se

co
nd

s

OpenCL SkelCL

100

0

25

50

75

Pr
og

ra
m

 S
ize

 (L
O

C) host program
kernel function

OpenCL SkelCL

Fig. 2 Runtime and program size of the Mandelbrot application.

SkelCL: Enhancing OpenCL 7

are needed. Listing 4 shows the SkelCL implementation using the MapOverlap
skeleton and the matrix data type; it follows straightforwardly from the se-
quential version in Listing 3, the only difference is that for accessing elements
the get function is used instead of the square bracket notation.

We performed runtime experiments using one NVIDIA Tesla GPU with
480 processing elements and 4 GByte memory. Figure 3 shows the runtime of
two OpenCL versions (from AMD and NVIDIA SDK) vs. the SkelCL version
with the MapOverlap skeleton presented in Listing 4. Only the kernel runtimes
are shown as the data transfer times are equal for all versions. Measurements
were taken using the OpenCL profiling API. We used the popular Lena image
with a size of 512 × 512 pixel and took the mean values of six runs. The
AMD version is clearly slower than the two other implementations, because
it does not use the fast local memory which the NVIDIA implementation
and the MapOverlap skeleton of SkelCL do. SkelCL totally hides the memory
management details from the application developer. The NVIDIA and SkelCL
implementations perform similarly well. In this particular example, SkelCL
even slightly outperforms the implementation by NVIDIA.

In addition to the performance advantage over the AMD and NVIDIA
versions, the SkelCL program is also significantly simpler: it comprises only

for (i = 0; i < width; ++i)

for (j = 0; j < height; ++j)

h = -1*img[i-1][j-1]

+1* img[i+1][j-1]

-2*img[i-1][j]

+2* img[i+1][j]

-1*img[i-1][j+1]

+1* img[i+1][j+1];

v = ...;

out[i][j] = sqrt(h*h+v*v);

Listing 3 Sequential Sobel edge detection.
Boundary checks are omited for brevity.

MapOverlap <char(char)> m(

"char func(const char* img) {

short h = -1*get(img ,-1,-1)

+1* get(img ,+1 ,-1)

-2*get(img ,-1, 0)

+2* get(img ,+1, 0)

-1*get(img ,-1 ,+1)

+1* get(img ,+1 ,+1);

short v = ...;

return sqrt(h*h + v*v);

}", 1, SCL_NEUTRAL , 0);

Matrix <char > out = m(img);

Listing 4 SkelCL implementation of the
Sobel edge detection.

 OpenCL OpenCL SkelCL

0.25

0

0.05

0.1

0.15

0.2

Ru
nt

im
e

in
 m

se
c

(AMD) (NVIDIA)

Fig. 3 Performance results for Sobel edge detection

8 Michel Steuwer, Sergei Gorlatch

few LOC (Listing 4) while the AMD implementation requires 37 LOC for its
kernel, and the NVIDIA implementation requires even 208 LOC. No index
calculations or boundary checks are necessary in the SkelCL version whereas
they are crucial for a correct implementation in OpenCL.

4 Conclusion and Related Work

This paper presents the SkelCL high-level programming model for multi-GPU
systems and its implementation as a library. The SkelCL programming model
significantly raises the level of abstraction: it combines parallel patterns to ex-
press computations, parallel container data types for simplified memory man-
agement, and a data (re)distribution mechanism for systems with multiple
GPUs. We showed that SkelCL greatly simplifies programming of GPU sys-
tems without sacrificing performance: the overhead is usually less than 10%
as compared to manually-optimized OpenCL codes. The SkelCL library is
available as open source software from http://skelcl.uni-muenster.de.

Projects like SkePU [4] and Muesli [5] are skeleton-based approaches sim-
ilar to SkelCL, but differing in focus and implementation, see [13] for com-
parison. There exist wrappers for OpenCL or CUDA and libraries for GPU
Computing, most popular: Thrust [7] and Bolt [2]. Compiler-based approaches
similar to OpenMP [12] include OpenACC [1] and OmpSs-OpenCL [3]. These
projects aim at reducing boilerplate code in GPU applications, rather than
introducing high-level abstractions – like SkelCL does.

Acknowledgments

This work is partially supported by the OFERTIE (FP7) and MONICA projects.
We would like to thank NVIDIA for their generous hardware donation.

References

1. OpenACC Application Program Interface, 2011. Version 1.0.
2. AMD. Bolt – A C++ template library optimized for GPUs, 2013.
3. V. K. Elangovan, R.M. Badia, and E. A. Parra. OmpSs-OpenCL programming model

for heterogeneous systems. In H.Kasahara and K.Kimura, editors, Languages and Com-
pilers for Parallel Computing, volume 7760 of LNCS, pages 96–111. Springer, 2013.

4. J. Enmyren and C. Kessler. SkePU: A Multi-Backend Skeleton Programming Library
for Multi-GPU Systems. In Proceedings 4th Int. Workshop on High-Level Parallel
Programming and Applications (HLPP-2010), 2010.

5. S. Ernsting and H. Kuchen. Algorithmic skeletons for multi-core, multi-GPU systems
and clusters. Int. J. of High Performance Comput. and Networking, 7(2):129–138, 2012.

6. S. Gorlatch and M. Cole. Parallel skeletons. In Encyclopedia of Parallel Computing,
pages 1417–1422. 2011.

7. J. Hoberock and N. Bell (NVIDIA). Thrust: A Parallel Template Library, 2013.
8. Khronos OpenCL Working Group. The OpenCL Specification, Nov. 2013. Version 2.0.
9. J. Kittler. On the accuracy of the sobel edge detector. Image and Vision Computing,

1(1):37 – 42, 1983.

http://skelcl.uni-muenster.de

SkelCL: Enhancing OpenCL 9

10. B. Mandelbrot. Fractal aspects of the iteration of z 7→ λz(1− z) for complex λ and z.
Annals of the New York Academy of Science, pages 249–259, 1980.

11. NVIDIA. NVIDIA CUDA SDK code samples, February 2013. Version 5.0.
12. OpenMP Architecture Board. OpenMP API, 2013. Version 4.0.
13. M. Steuwer and S. Gorlatch. SkelCL: Enhancing OpenCL for high-level programming of

multi-GPU systems. In V.Malyshkin, editor, Parallel Computing Technologies (PaCT
2013), volume 7979 of LNCS, pages 258–272. Springer, 2013.

14. M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A portable skeleton library for high-
level GPU programming. In Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), 2011 IEEE International Symposium on, pages 1176–1182, 2011.

	Introduction
	SkelCL: Programming Model and Library
	Application Studies and Experiments
	Conclusion and Related Work

