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ABSTRACT

The implementation of stencil computations on modern, massively parallel systems with

GPUs and other accelerators currently relies on manually-tuned coding using low-level
approaches like OpenCL and CUDA. This makes development of stencil applications a

complex, time-consuming, and error-prone task. We describe how stencil computations
can be programmed in our SkelCL approach that combines high-level programming ab-

stractions with competitive performance on multi-GPU systems. SkelCL extends the

OpenCL standard by three high-level features: 1) pre-implemented parallel patterns
(a.k.a. skeletons); 2) container data types for vectors and matrices; 3) automatic data

(re)distribution mechanism. We introduce two new SkelCL skeletons which specifically

target stencil computations – MapOverlap and Stencil – and we describe their use for par-
ticular application examples, discuss their efficient parallel implementation, and report

experimental results on systems with multiple GPUs. Our evaluation of three real-world
applications shows that stencil code written with SkelCL is considerably shorter and
offers competitive performance to hand-tuned OpenCL code.

Electronic version of an article published as Parallel Processing Letters, Volume 24, Issue 03,
September 2014, 17 pages. DOI: 10.1142/S0129626414410059 c©World Scientific Publishing Com-

pany, Journal URL: http://www.worldscientific.com/worldscinet/ppl

Keywords: Stencils, Manycores, GPU, OpenCL, Skeletons, SkelCL

1. Introduction

Stencil computations play an important role in a number of application domains in-

cluding time-intensive scientific simulations, image processing and others. Modern

manycore architectures comprising Graphics Processing Units (GPUs) and other

accelerators provide potentially tremendous computing power for challenging appli-

cations including stencil computations.

However, current programming approaches for multi-GPU architectures are low

level, the most popular examples being OpenCL [1] and CUDA [2]. Even for one

GPU, these approaches require the programmer to explicitly manage the GPU’s

memory (including memory (de)allocations and data transfers to/from the sys-

tem’s main memory) and explicitly specify parallelism in the computation. This
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leads to lengthy, low-level, complicated and, thus, error-prone code. For multi-GPU

systems, programming with CUDA and OpenCL becomes even more complex, as

both approaches require an explicit implementation of data exchange between the

GPUs, as well as disjoint management of each GPU, including low-level pointer

arithmetics and offset calculations. When implementing stencil computations, ad-

ditional challenges arise, like handling out-of-bound memory accesses and achieving

high performance by making efficient use of the fast but small local GPU memory.

In this paper, we present our SkelCL [16] approach to high-level, manycore pro-

gramming, and we describe how it simplifies stencil programming and achieves com-

petitive performance on multi-GPU systems. SkelCL extends the standard OpenCL

by three high-level mechanisms:

1) computations are easily expressed using pre-implemented parallel patterns

(a.k.a. skeletons);

2) memory management is simplified using container data types for vectors

and matrices;

3) data movement in multi-GPU systems is handled automatically by SkelCL’s

(re)distribution mechanism.

For stencil computations, we extend SkelCL with two specialized skeletons:

MapOverlap for simple stencil computations, and Stencil for more complex, in par-

ticular iterative, stencil applications.

This paper extends of our work presented at the first international workshop

on high-performance stencil computations [3] with an real-world application study

including experimental results. In Section 2 we introduce stencil computations and

their programming on systems with GPUs. Section 3 presents our SkelCL library

for high-level GPU programming. In the next two sections we discuss how SkelCL

can be used for stencil computations on single- (Section 4) and multi-GPU systems

(Section 5). We evaluate our approach using three real-world stencil applications

in Section 6, before we compare our approach with related work and conclude in

Section 7.

2. Stencils Using OpenCL

A stencil computation is a computational pattern on a multi-dimensional grid, where

each point of the grid is updated (often iteratively) as a function of its neighboring

points. Each point of the grid stores a application-specific values. The particular

computation performed to update the values of each point depending on the values

of the neighboring points is called the stencil operation. The neighboring points

taken into account for a stencil operation constitute the so-called stencil shape.

Let us consider how stencil computations are implemented on systems with

GPUs using the state-of-the-art OpenCL approach. Listing 1 presents the simplified

structure of an OpenCL implementation of the Gaussian blur application [14] on

one GPU, a typical stencil computation used in image processing for smoothing
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1 kernel void gauss(global const char* in_img ,

2 global char* out_img , int w, int h) {

3 int i = get_global_id (0); int j = get_global_id (1);

4 if (i < w && j < h) {

5 char ul = (j-1 > 0 && i-1 > 0) ? in_img [((j-1)*w)+(i-1)] : 0;

6 ...

7 char lr = (j+1 < h && i+1 < w) ? in_img [((j+1)*w)+(i+1)] : 0;

8 out_img[j*w+i] = computeGaussianBlur(ul, ..., lr); } }

Listing 1. Structure of the OpenCL implementation of the Gaussian blur application.

images. Lines 5–7 show how the direct neighboring elements, e.g., the upper left

(ul) neighbor, are accessed and passed to a function performing the Gaussian blur

computation in line 8. Even in such a simple example many low-level details have

to be considered by the developer for a correct implementation, like raw pointer

handling, including index computations, and explicit out-of-bound accesses handling

(e.g., in line 5).

The OpenCL version in Listing 1 is not efficient: the fast local GPU memory

is not used and the control flow diverges heavily between different work items,

which is disadvantageous on current GPU architectures. However, the correspond-

ing optimizations require a deep knowledge of the GPU’s architecture and must be

programmed and tuned manually and are, therefore, a complicated task for appli-

cation developers. If the program is to be used on a multi-GPU system then the

application developer has to additionally implement and optimize the explicit data

distribution across multiple GPUs and the communication between them.

3. The SkelCL Skeleton Library

We develop SkelCL [16] – a skeleton library for computing systems with Graphics

Processing Units (GPUs). By providing skeletons (constructs implementing com-

mon patterns of parallel programming) on container data types, SkelCL alleviates

programming of systems with GPUs: parallelism is expressed implicitly using skele-

tons, and memory management is performed automatically by the SkelCL imple-

mentation which is built on top of OpenCL. The especially tricky programming of

multi-GPU systems is greatly simplified by SkelCL’s data distribution mechanism

which automatically moves data between multiple GPUs.

Algorithmic Skeletons In OpenCL, computations are expressed as kernels, e.g.,

as in Listing 1, which are executed in a parallel manner on a GPU; the application

developer must explicitly specify how many instances of a kernel are launched.

In addition, kernels usually take pointers to GPU memory as input and contain

program code for reading/writing single data items from/to it. These pointers have

to be used carefully, because no boundary checks are performed by OpenCL.

To shield the application developer from these low-level programming issues,

SkelCL extends OpenCL by introducing high-level programming patterns, called
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(algorithmic) skeletons. Formally, a skeleton is a higher-order function that executes

one or more user-defined (so-called customizing) functions in a pre-defined parallel

manner, while hiding the details of parallelism and communication from the user [9].

The current version of SkelCL provides four basic skeletons (Map, Reduce, Zip,

and Scan) and three more advanced skeletons (Allpairs, MapOverlap, and Sten-

cil). Due to lack of space, we only describe the first two basic skeletons here; the

other basic skeletons are described in detail in [16]. The stencil-oriented skeletons

MapOverlap and Stencil are described in detail in Section 4.

The Map skeleton applies a unary function f to each element of an input vector

[v1, v2, . . . , vn], i e.:

map f [v1, v2, . . . , vn] = [f(v1), f(v2), . . . , f(vn)]

The Reduce skeleton computes a scalar value from a vector using an (associative

and commutative) binary operator ⊕, i. e.

red ⊕ [v1, v2, . . . , vn] = v1 ⊕ v2 ⊕ . . .⊕ vn

The programmer customizes suitable skeletons by application-specific functions

which work on basic data types and, therefore, they are often much simpler than

kernels that work with pointers. Skeletons can be executed on both single- and

multi-GPU systems; on a multi-GPU system, the calculation specified by a skeleton

is performed automatically on all GPUs of the system.

Container Data Types SkelCL offers two container data types – vector and ma-

trix – which are transparently accessible by both the CPU and the GPUs. The vector

abstracts a one-dimensional contiguous memory area while the matrix provides an

interface to a two-dimensional memory area.

The advantage of the container data types in SkelCL as compared with OpenCL

is that data transfers between the memories of the CPU and GPUs are performed

implicitly. Before execution, the SkelCL implementation ensures that all input con-

tainers’ data is available on all participating GPUs. This may result in automatic

data transfers from the CPU memory to GPU memory, which in OpenCL would

require explicit programming. Similarly, before any data is accessed on the CPU,

the implementation of SkelCL ensures that this data on the CPU is up-to-date.

This may result in data transfers from the GPU which are performed automatically

too. Thus, the container classes free the programmer from low-level programming

of memory allocation (on GPU) and data transfers between CPU and GPU.

While all data transfers are performed implicitly by SkelCL, advanced appli-

cation developers may sometimes desire an explicit control over the data transfers

between CPU and GPU. For this purpose SkelCL offers a set of APIs to explicitly

initiate and control the data transfers to and from the GPUs.
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Fig. 1. Distributions of a vector in SkelCL.

(Re)Distribution Mechanism For multi-GPU systems, SkelCL’s parallel con-

tainer data types (vector and matrix) abstract from the separate memory areas

on multiple GPUs, i. e., container’s data is accessible by all GPUs. To simplify the

partitioning of a container on multiple GPUs, SkelCL offers the concept of distri-

butions that specify how containers are distributed among the GPUs. It allows the

application developer to abstract from explicitly managing memory ranges which

are shared or partitioned across multiple GPUs.

Four kinds of distributions are currently available to the application developer

in SkelCL: single, copy, block, and overlap (see Fig. 1 for illustration on a system

with two GPUs). If set to the single distribution (Fig. 1a), container’s whole data

is stored on a single GPU (the first GPU if not specified otherwise). The copy

distribution (Fig. 1b) copies container’s entire data to each available GPU. With

the block distribution (Fig. 1c), each GPU stores a contiguous, disjoint block of

the container. The overlap distribution (Fig. 1d) is used for the MapOverlap and

Stencil skeletons: it stores on both GPUs a common block of data from the border

between the GPUs. For the matrix data type the block and overlap distributions are

currently limited for pragmatic reasons to partitioning along the rows dimension.

By default a regular partitioning based on the number of GPUs available is

chosen for the block and overlap distribution. In heterogeneous systems combin-

ing different types of GPUs or GPUs integrated with CPUs, this partitioning is

not optimal and leads to imbalance. SkelCL allows the user to specify the size of

each block separately, therefore, advanced users can tune their applications for a

particular system.

The application developer can set the distribution of containers explicitly or,

otherwise, every skeleton selects a default distribution for its input and output con-

tainers. The distribution of a container can be changed at runtime: this implies data

exchanges between multiple GPUs and the CPU, which are performed by SkelCL

implicitly. Implementing such data transfers in standard OpenCL is a cumbersome

task: data has to be downloaded to the CPU before it can be uploaded to other

GPUs, including the corresponding length and offset calculations; this results in a

lot of low-level code which is completely hidden when using SkelCL.

The consistency of user-specified distributions with skeletons, expectations is

checked and enforced at runtime: e. g., if a block distributed container is passed as

input to a Stencil skeleton, which expects its input to be overlap distributed, the

distribution is changed at runtime by the skeletons implementation.
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4. New Skeletons for Stencils

While the particular stencil operations vary for different applications, the overall

structure of stencil computations stays the same. Therefore, stencil computations

can be implemented as a skeleton which can be customized by the application

developer with a stencil operation and stencil shape. To simplify the development of

stencil applications, we introduce two specialized skeletons in SkelCL: MapOverlap

and Stencil. While MapOverlap supports simple stencil computations, the Stencil

skeleton provides support for more complex stencil computations with more complex

stencil shapes and (possibly) iterative execution.

The MapOverlap Skeleton Listing 2 shows the implementation of the Gaus-

sian blur using the MapOverlap skeleton. The MapOverlap skeleton applies a given

function func (defined in lines 2–6) to each element of an input matrix in img while

taking the neighboring elements within the range [−d,+d] in each dimension into

account. Here, d is the second parameter and the last parameter defines how the

skeleton handles out-of-bound memory accesses (line 7). The get helper function

is used to easily access the neighboring elements. The indexes are specified rela-

tive to the current element, e. g. to access the element on the left the function call

get(in img, -1, 0) is used.

1 MapOverlap <char(char)> gauss(

2 "char func( char_matrix_t in_img) {

3 char ul = get(in_img , -1, -1);

4 ...

5 char lr = get(in_img , +1, +1);

6 return computeGaussianBlur (ul ,... , lr);}",

7 1, BorderHandling :: NEUTRAL (0));

8 Matrix <char > input = loadImage ();

9 output = gauss(input);

Listing 2. Implementation of Gaussian blur using the MapOverlap skeleton

Special handling is necessary when accessing elements out of the boundaries of

the matrix, e.g., when the item in the top-left corner of the matrix accesses elements

above and left of it. The MapOverlap skeleton can be configured to handle such

out-of-bound memory accesses in two possible ways: 1) a specified neutral value is

returned; 2) the nearest valid value inside the matrix is returned. In Listing 2, the

first option is chosen and 0 is provided as neutral value.

The Stencil Skeleton Listing 3 shows the implementation of an iterative stencil

application simulating heat transfer. This application simulates heat spreading from

one location and flowing throughout a two-dimensional simulation space.

The application developer specifies the function describing the computation (line

2–6), as well as the extents of the stencil shape (line 7) and the out-of-bound han-
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1 Stencil <char(char)> heatSim(

2 "char func( char_matrix_t in) {

3 char lt = get(in , -1, -1);

4 char lm = get(in , -1, 0);

5 char lb = get(in , -1, +1);

6 return computeHeat (lt ,lm ,lb);}",

7 StencilShape (1, 0, 1, 1),

8 BorderHandling :: NEUTRAL (255));

9 Matrix <char > simSpace = init();

10 output = heatSim (100, simSpace);

Listing 3. Implementation of heat simulation using

the Stencil skeleton
Fig. 2. Stencil shape for heat
transfer simulation

dling (line 8). The stencil shape’s extents are specified using four values for each of

the directions: up, right, down, and left. In the example in Listing 3, the heat flows

from left to right, therefore, no accesses to the elements to the right are necessary

and the stencil space’s extents are specified accordingly (note the 0 in line 7 rep-

resenting the extent to the right). Figure 2 illustrates this situation: the dark gray

element is updated by using the values from the left. The specified stencil shape’s

extent is highlighted in light gray. In our current implementation, the user has to

explicitly specify the stencil shape’s extents, which is necessary for performing the

out-of-bound handling on the GPU. In future work, we plan to automatically infer

the stencil shape from the customizing function using source code analysis in order

to avoid inconsistencies and free the user from specifying this information explicitly.

To iterate the heat transfer simulation for one hundred steps, we specify the number

of iterations to perform when executing the skeleton (line 10). In the future, we plan

to allow a user-specified function to check a condition and stop the iterations.

Sequence of Stencil Operations Many real-world applications perform differ-

ent stencil operations in a sequence, like the popular Canny algorithm [14] which

is used for detecting edges in images. For the sake of simplicity we consider a sim-

plified version, which applies the following steps: 1) a noise reduction operation is

applied, e. g., a Gaussian blur; 2) an edge detection operator like the Sobel filter is

applied; 3) the so-called non-maximum suppression is performed, where all pixels

in the image are colored black except pixels being a local maximum; 4) a thresh-

old operation is applied to produce the final result. A more complex version of the

algorithm performs the edge tracking by hysteresis as an additional step.

In SkelCL, each single step of the Canny algorithm can be expressed using the

Stencil skeleton. The threshold operation performed as the last step, does not need

access to neighboring elements, because the user function only checks the value

of a single pixel. The implementation of the Stencil skeleton automatically uses

the implementation of the simpler (and thus faster) Map skeleton when the user

specifies a stencil shape whose extents are 0 in all directions.
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1 Stencil <Pixel(Pixel)> gauss (...);

2 Stencil <Pixel(Pixel)> sobel (...);

3 Stencil <Pixel(Pixel)> nms (...);

4 Stencil <Pixel(Pixel)> threshold (...);

5
6 StencilSequence <Pixel(Pixel)> canny(

7 gauss , sobel , nms , threshold);

8
9 Matrix <Pixel > input = loadImage ();

10 output = canny(1, input);

Listing 4. Structure of the Canny algorithm

implemented by a sequence of skeletons.
Fig. 3. The MapOverlap skele-

ton prepares a matrix by copy-

ing data on the top and bottom.

To implement the Canny algorithm in SkelCL, the single steps can be combined

as shown in Listing 4. The individual steps are defined in lines 1–4 and then com-

bined to a sequence of stencils in lines 6 and 7; this sequence is then executed in

line 10.

Implementation In order to achieve high performance, our implementations of

both the MapOverlap and the Stencil skeleton use the GPU’s fast local memory.

Both implementations perform the same basic steps on the GPU: 1) the data is

loaded from the global memory into the local memory; 2) the user-defined function

is called for every data element by passing a pointer to the element’s location in the

local memory; 3) the result of the user-defined function is written into the global

memory. Although both implementations perform the same basic steps, different

strategies are used for loading the data from the global into the local memory.

The MapOverlap skeleton prepares the input matrix on the CPU before upload-

ing it to the GPU: padding elements are added to avoid out-of-bounds memory

accesses to the top and bottom of the input matrix, as shown in Figure 3. This

slightly enlarges the input matrix, but it reduces branching on the GPU due to

avoiding some out-of-bound checks. In SkelCL, a matrix is stored row-wise in mem-

ory on the CPU and GPU, therefore, it would be complex and costly to add padding

elements on the left and right of the matrix. For handling out-of-bound accesses for

these regions, the boundary checks are performed on the GPU.

The Stencil skeleton has to use a different strategy in order to enable the usage of

different out-of-bound handling modes and stencil shapes when using several Stencil

skeletons in a sequence. As an example, consider two stencils in a sequence where the

first defines a stencil shape with a neutral element 0 and the second defines a neutral

element 1. This cannot be implemented by padding the input matrix as done by

the implementation of the MapOverlap skeleton. Therefore, in the implementation

of the Stencil skeleton no padding elements are added on the CPU, but rather all

out-of-bounds accesses are handled on the GPU. This slightly increases branching

in the code, but enables a more flexible usage of the skeleton.
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5. Targeting Multi-GPU Systems

The support of systems with multiple OpenCL devices is one of the key features of

SkelCL. By using distributions, SkelCL completely frees the user from error-prone

and low-level explicit programming of data (re)distributions on multiple GPUs.

The MapOverlap skeleton uses the overlap distribution with border regions in

which the elements calculated by a neighboring device are located. When it comes to

iteratively executing a skeleton, data has to be transferred among devices between

iteration steps, in order to ensure that data is up-to-date for the next iteration step.

As the MapOverlap skeleton does not explicitly support iterations, its implementa-

tion is not able to exchange data between devices besides a full down- and upload

of the matrix. This data exchange has to be performed after each iteration.

The Stencil skeleton supports iterative execution and exchanges only the ele-

ments from the border region, rather than performing a full down- and upload of

the matrix. Using the Stencil skeleton in multiple iteration steps can be performed

before exchanging data by enlarging the number of elements in the border region.

The user can specify the number of iterations between device synchronizations,

where all border regions are updated with elements from the corresponding inner

border regions of the neighboring device. Data is exchanged by default after each

iteration, however, there may be cases in which a different number of iterations

between device synchronizations may result in better performance (see Section 6).

Figure 4 shows how the device synchronization is performed. Only elements

from the inner border regions are downloaded and stored as std::vectors in a

std::vector. Within the outer vector, the inner vectors are swapped pair-wise on

the host, so that the inner border regions can be uploaded in order to replace the

out-of-date border regions.

Host

Device 0

Device 1

Device 2

Device 0

Device 1

Device 2

Fig. 4. Device synchronization for three devices. Equally patterned and colored chunks represent
the border regions and their matching inner border region. After the download of the appropriate
inner border regions, they are swapped pair-wise on the host. Then the inner border regions are

uploaded in order to replace the out-of-date border regions.
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6. Evaluation

For evaluating the MapOverlap and Stencil skeleton implementations, we study

three real-world stencil applications:

1) the Gaussian blur, a popular noise reduction technique in image processing,

2) the Canny algorithm for detecting edges in images, and

3) the Finite-Difference-Time-Domain (FDTD) Method [18] for random lasing sim-

ulations from the field of optical physics.

These three applications have different characteristics. The Gaussian blur applies

a single stencil computation, possibly iteratively, for reducing the noise in images.

The Canny edge detection algorithm consists of a sequence of stencil operations

which are applied once to obtain the final result. The FDTD application performs

a large number of iterations, where in each iteration three stencil operations are

performed.

We compare the performance of our MapOverlap and Stencil skeletons using an

input image of size 4096×3072. The measurements run on a Tesla S1070 computing

system with 4 GPUs, each providing 4 GB of memory and 240 compute units per

GPU. Altogether 200 runs were performed for each configuration and the average

was calculated; to reduce measuring inaccuracy, the best and worst 5% measure-

ments were not considered.

Gaussian Blur using a single GPU Figure 5 shows the total runtime of the

Gaussian blur using: 1) a näıve OpenCL implementation using global memory (see

Listing 1), 2) an optimized OpenCL version using local memory, 3) the MapOverlap

(see Listing 2), and 4) the Stencil skeleton based implementation for different sizes

of stencil shape, correspondingly. We observe that on larger stencil shape sizes,

MapOverlap and Stencil outperform the näıve OpenCL implementation by over

60%. The optimized OpenCL version is 5% faster than MapOverlap and 10% faster

than Stencil for small stencil shapes and only 3—5% faster for larger stencil shapes.
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Fig. 5. Single GPU runtime of the Gaussian blur using a näıve OpenCL implementation, an
optimized OpenCL version and SkelCL’s MapOverlap and Stencil skeletons.
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Fig. 6. Lines of code (LOCs) of the Gaussian blur using an OpenCL version with global memory,
an optimized OpenCL version with local memory and SkelCL’s MapOverlap and Stencil skeletons.

The implementation based on the Stencil skeleton is slower than the imple-

mentation using the MapOverlap skeleton for small stencil shapes. However, this

disadvantage becomes negligible for stencil shapes larger than 5. The runtime differ-

ence is due to the increased branching in the kernel function of the Stencil skeleton’s

implementation when copying data into the local memory.

Figure 6 shows the program sizes in lines of code (LOC) for the four imple-

mentations. The application developer needs 57 lines of OpenCL host code and 13

LOCs for performing a Gaussian blur with global memory. When using local mem-

ory, more arguments are passed to the kernel, increasing the host-LOCs to 65. The

kernel function copies elements necessary for the calculation of a work-group into

the local memory, which requires 88 LOCs including explicit out-of-bounds handling

and complex index calculations. The implementations using the MapOverlap and

Stencil skeletons are similar and both require only 15 LOCs host code and 9 LOCs

kernel code to perform a Gaussian blur. The source code of the two SkelCL imple-

mentations remains the same when using multi-GPU systems. This is an important

advantage of SkelCL over the OpenCL implementations of the Gaussian blur which

are single-GPU only. Additional LOCs would be required to enable multi-GPU

support in these versions.

Gaussian Blur using multiple GPUs Figure 7 shows the speedup achieved

on the Gaussian blur using the Stencil Skeleton on up to four GPU devices using

different sizes of the stencil shape. Using multiple GPUs for this application is

only beneficial for stencil shapes larger than 4. For an increasing size of the stencil

shape and, therefore, the complexity of the computation, the overhead of managing

multiple devices is hidden. This leads to a maximum speedup when using a stencil

shape of size 20 of 1.90 for two devices, 2.66 for three devices, and 3.34 for four

devices. The Gaussian blur is usually used with small stencil shapes but similar

applications from the field of computer vision can make use of large stencil shapes,

e. g., feature extraction and object tracking [14, 17].
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algorithm implemented with the MapOverlap
and Stencil skeletons.

Canny edge detection Figure 8 shows the absolute runtime of the Canny al-

gorithm (Listing 4) on a single GPU. As the MapOverlap skeleton adds padding

elements to the matrix, the matrix has to be downloaded, resized and uploaded

again to the GPU at each step of the sequence. This additional work leads to an

increased time for data transfers as compared to the Stencil skeleton. The com-

putations without the data transfer are 2.1 and 2.2 times faster when using the

MapOverlap skeleton as compared to using the Stencil skeleton. This performance

difference is mainly due to the different strategies used to load elements form the

global into the local memory. Overall, when performing sequences of stencil opera-

tions, the Stencil skeleton avoids unnecessary copy operations and therefore leads to

a better performance. When performing the Canny algorithm, Stencil outperforms

MapOverlap by 21%.

Finite-Difference-Time-Domain (FDTD) Method for Random Lasing

Simulations As our third application study we use a simulation from the field

of optical physics, where the propagation of light through a medium is simulated.

In the simulation two fields, the electric field ~E and the magnetic field ~H, are

iteratively updated using stencils computations. The Maxwell’s equations are the

basic equations describing electrodynamic processes in nature and are used here to

describe the light propagating through a non-magnetic (dielectric) medium.

~∇ ~E (~r, t) = 0, (1) ~∇ ~H (~r, t) = 0, (2)

∂ ~H (~r, t)

∂t
= − 1

µ0

~∇× ~E (~r, t) , (3)
∂ ~D (~r, t)

∂t
=

1

ε0
~∇× ~H (~r, t) , (4)



October 7, 2015 9:25 WSPC/INSTRUCTION FILE final

Instructions for Typesetting Camera-Ready Manuscripts 13

Fig. 9. The image shows a 3D representa-
tion of the intensity for the 2D electric field
as computed by the SkelCL FDTD imple-
mentation after 60 000 iterations.
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Fig. 10. Runtime for one iteration of the
FDTD application.

Eq. (1)-(4) show the Maxwell’s equations consisting of four coupled partial differ-

ential equations (PDEs). To couple the polarisation of a medium ~P to the electric

field, Eq. (5) is introduced:

~E (~r, t) =

~D (~r, t)− ~P
(
~r, t, ~N

)
ε0εr (~r)

(5)

Here ~N is the induced energy distribution in the medium using the model proposed

in [11]. The parameters µ0, ε0 and εr describe the permeability and permittivity of

free space and the relative permittivity of the dielectric medium.

To solve this set of coupled PDEs, the Finite-Difference-Time-Domain Method

(short FDTD) [19] can be used. Here we use a form of FDTD where the electric

and magnet field are discretized within a n-dimensional regular grid. ~E and ~H are

shifted against each other by a half grid-cell. This allows the calculation of the new

values by computing finite differences between two values of the grid. Using the

FDTD method, we implemented a simulation of the effect of random lasing on a

nano-meter scale [5] for our evaluation.

Figure 9 shows a visualization of the electric field (and the field intensity) after

about 1 ps of simulation time equal to 60 000 iterations. The shown field distribution

can be found also in [4, 15, 18].

We implemented a two-dimensional version using SkelCL as well as a manually

tuned OpenCL implementation. To solve the PDEs (3) and (4), two separated three-

point stencil computations are performed and one map computation for the gain-

model is necessary. Eq. (1) and (2) are implicitly solved by the FDTD method [19].

Listing 5 shows the SkelCL code of the application: in every iteration first the energy

distribution is updated (line 11) using a map skeleton (defined in line 1); then the

first stencil (defined in line 2) updates the electric field ~E by combining a single

element of ~E with three elements of the magnetic field ~H (line 12); and finally the
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1 Map <float4(float4)> updateEnergyDist (...);

2 Stencil <float4(float4)> updateEField (...);

3 Stencil <float4(float4)> updateHField(

4 "float4 func( float4_matrix_t E, float4_matrix_t H) { ... }");

5
6 Matrix <float4 > N; // energy distribution in the medium

7 Matrix <float4 > E; // E (electric) field

8 Matrix <float4 > H; // H (magnetic) field

9

10 for (...) { // for each iteration

11 updateEnergyDist(out(N), N, out(E));

12 updateEField(out(E), H, E);

13 updateHField(out(H), E, H); }

Listing 5. Source code of the FDTD application in SkelCL

second stencil (defined in line 3) updates ~H by combining a single element of ~H

with three elements of ~E (line 13).

Please note that the two stencil computations require both fields ( ~E and ~H)

as input. To implement this, we use the additional argument feature of SkelCL

(see [16] for details) which allows the additional field to be passed to skeletons on

execution (see line 12 and 13). The additional arguments are passed unchanged

to the customizing function of the skeleton, therefore, the function customizing the

stencil in line 4 now accepts ~H as a second parameter. This feature greatly increases

the flexibility of applications written in SkelCL.

In the evaluation we used a 2048×2048 sized matrix with a spatial resolution of

100 cells per µm. This matrix corresponds to a square-shaped medium with the edge

length of 20.1µm. The medium size is actually smaller than the matrix size because

of the border handling. To provide a physically correct simulation, the borders of

the magnet field must be treated specially. The Stencil skeleton provides sufficient

functionality to allow for such border handling in the computation code.

We compared our SkelCL based implementation to a handwritten, fine-tuned

OpenCL implementation which is based on [12]. The OpenCL version is specifically

designed for modern Nvidia GPUs. In particular, it exploits the L1 and L2 caches

of the Nvidia Fermi and Kepler architecture and does not explicitly make use of the

local memory. We performed the experiments on a system with a modern Nvidia

K20c Kepler GPU with 5GB memory and 2496 compute cores. Figure 10 shows the

median times of a simulation time of 1 ps equal to 60 000 iterations. The SkelCL

version slightly outperforms the OpenCL version by 2%. The two stencil skeletons

achieve ∼10% faster runtimes than the corresponding OpenCL kernels but the map

skeleton is ∼20% slower, because it reads and writes all elements exactly once, while

the customized OpenCL kernel does not write back all elements. For this application

it seems beneficial to make direct usage of the local memory as our implementation

of the Stencil skeleton does, instead of relying on the caches of the hardware, as the

OpenCL implementation does.
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7. Conclusion and Related Work

In the paper, we describe how stencil computations are programmed in our SkelCL

approach that combines high level of programming abstraction with competitive

performance on multi-GPU systems. We introduce two SkelCL skeletons for stencil

computations – MapOverlap and Stencil – and we discuss their efficient parallel

implementation, and report experimental results using three real-world stencil ap-

plications. We demonstrate that when executing a single stencil shape once, the

MapOverlap skeleton performs best; in all other cases, the Stencil skeleton is the

better choice regarding both user comfort and performance. Both skeletons offer a

high level of programming abstraction together with a competitive performance on

multiple devices, and yield much simpler codes than when using OpenCL.

Several approaches aiming at simplifying GPU programming exist. SkePU [8]

provides a vector class similar to our Vector class, but unlike SkelCL it does not

support different kinds of data distribution on multi-GPU systems. SkelCL provides

a more flexible memory management than SkePU, as data transfers can be expressed

by changing data distribution settings. Similar to SkelCL there exists a MapOverlap

skeleton in SkePU, whose implementation adapts to the execution hardware using

autotuning techniques [7]. Thrust [10] provides two vector types similar to the vector

type of the C++ Standard Template Library. While these types refer to vectors

stored in CPU or GPU memory, respectively, SkelCL’s vector data type provides a

unified abstraction for CPU and GPU memory. Thrust also contains data-parallel

implementations of higher-order functions, similiar to SkelCL’s skeletons. SkelCL

adopts several of Thrust’s ideas, but we are not limited to CUDA-capable GPUs

and we support multiple GPUs. Both SkePU and Thrust provide no explicit support

for iterative stencil computations as presented in this paper.

Several projects focus on stencil computations on GPUs. PATUS [6] is a code

generation and tuning framework for stencil computations. It can generate opti-

mized code for multicore processors and a single GPU. PARTANS [13] is a code

generation and autotuning framework which automatically distributes and opti-

mizes stencil computations on multiple GPUs, by searching for optimal parameters

for a given hardware architecture. These specialized approaches can only be applied

to stencil computations, whereas SkelCL is a general-purpose approach.
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