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Abstract
While contemporary GPU architectures are heavily biased towards
the execution of predictably regular data parallelism, many real
application domains are based around data structures which are
naturally sparse and irregular. In this paper we demonstrate that
high level programming and high performance GPU execution for
sparse, irregular problems are not mutually exclusive. Our insight
is that this can be achieved by capturing sparsity and irregular-
ity friendly implementations within the target space of a pattern-
oriented, high-level compilation and transformation system. By
working in a language rather than a library, we benefit from the
ability to generate implementations by program-specific compo-
sition of building blocks which capture detailed, low-level imple-
mentation choices. Using sparse matrix-vector multiplication as a
case study, we show that the resulting system produces implemen-
tations for which the performance is competitive with, and some-
times outperforms that obtained with leading ad-hoc approaches.
We show that there are correlations between good implementation
choices and simple measurable properties of the irregularity present
in problem instances. These can be used to design heuristics which
navigate the implementation space effectively.

In a case study, we implement a number of versions of sparse
matrix-vector multiplication, and achieve promising preliminary
performance results. On very regular sparse matrices we are able
to achieve up to 1.8x the performance of the state-of-the-art sparse
matrix-vector implementation from the clSPARSE libray, and up to
0.7x the performance on very irregular applications.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Modern high performance parallel architectures, such as GPUs,
are well suited to executing applications containing high levels of
dense, regular data parallelism. Existing high level programming
frameworks and languages, such as Accelerate [3], SkelCL [10]
and NOVA [5] aim to make this parallelism easily accessible to
non-specialist programmers. By keeping the underlying language
semantics close to the capabilities of the hardware, the range of
programs expressible is limited to those which are likely to be
efficiently executable.

Unfortunately, many important problem domains (e.g. graph al-
gorithms) give rise to data sets which are sparse and irregular. To
address this, and maintain performance, programmers resort to the
use of low level languages (for example, CUDA and OpenCL) and
ad-hoc optimizations. The resulting code tends to suffer from a lack
of portability, and its production is labour-intensive. While encap-
sulating the resulting code in libraries benefits application program-
mers in the short term, the monolithic nature of their implementa-
tion makes maintenance and improvement increasingly complex.

In this paper we present promising initial results for a new ap-
proach to the challenge of combining ease of programming with
the ability to make complex, data-dependent optimization choices.
Our insight is that this can be achieved by representing both the
high level application and the low level optimizations within a
uniform language framework, based around parallel patterns, and
traversable through a system of compiler-implemented transforma-
tions. In such a system applications can be recompiled to account
for new system and data characteristics, and the whole framework
can be easily extended by the addition of new patterns and trans-
formations.

Our paper is structured as follows: section 2 presents back-
ground material on sparsity and irregularity in matrix computa-
tion, and its implications for efficient GPU programming, section 3
describes the compilation and transformation framework within
which we have conducted our study, section 4 describes our case
study in sparse-matrix dense-vector multiplication, focusing on the
optimising transformations we were able to capture. Section 5 ex-
plains the experimental setup and presents our experimental results.
We complete the paper in sections 6 and 7 with discussion of related
work and conclusions.
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2. Background
In this section we introduce the phenomena of sparsity and irreg-
ularity in matrices, and the key characteristics of GPUs and the
OpenCL programming model. We focus on the challenges which
sparsity and irregularity pose for efficient GPU programming.

2.1 Sparsity and Irregularity in Matrices
Sparsity refers to the phenomenon by which significant portions
of a matrix do not contribute data which is “interesting”, except
through its position. Typically this involves values which are ze-
ros in the underlying algebra. Sparsity is conventionally addressed
by storing only the interesting entries in some compressed format.
This saves space, but can complicate access (and hence add com-
putation time) depending upon the requirements of each algorithm.

Irregularity refers to the extent of structure present in sparse
matrices. For example, the tri-diagonal matrices common in many
applications of linear algebra are highly regular, and lend them-
selves to specialized formats and algorithms which exploit this. In
contrast, graphs arising from web applications are much less reg-
ular [7]. When attacked with data parallel algorithms, this irregu-
larity results in significant variation in granularity of computation
associated with the individual operations. For example, the amount
of work involved in mapping some operation across the rows of
a matrix will depend upon the sparsity and layout of the data in
each row. Irregularity therefore generates load-balancing problems,
which require good heuristics for the mapping of work to process-
ing elements.

In this paper, we will see that the degree and forms of sparsity
and irregularity present have a large impact on the correct choice of
implementation strategy for sparse-matrix dense-vector multiplica-
tion (SMV), which is itself is a fundamental building block for a
large range of applications. In our experiments we quantify spar-
sity by counting the number of non-zero elements present in each
row of the input matrix, and irregularity by measuring the variance
in sparsity across the whole matrix.

2.2 GPU programming and the OpenCL model
Both our implementation and the framework we compare against
are implemented using OpenCL [12]. OpenCL is a cross platform
language designed to allow programmers to program heteroge-
neous compute devices (such as GPUs, CPUs, FPGAs etc) in a data
parallel manner.

OpenCL programs are described in terms of compute kernels,
written in a limited subset of the C programming language, which
are executed in parallel on a device. The executing threads (called
work items) are grouped into workgroups which are scheduled
by the execution device across a set of compute units which are
typically lightweight SIMT (single instruction, multiple thread)
cores.

For execution, modern GPUs group multiple work items of a
single workgroup into warps. Work items within a warp run in
lockstep with each other, with a single instruction applied across
all work items each cycle. If two work items within an individual
warp diverge, i. e. attempting to execute two different instructions,
the work items executing the one instruction will halt, while the
other work items execute their instruction, in effect, serialising
the execution. This is termed work-item divergence and should be
avoided for achieving high performance.

OpenCL defines a memory model, which separates memory into
three distinct address spaces: global, local and private memory. On
a GPU, global memory is typically implemented as a large, rela-
tively low-bandwidth and high-latency region of memory shared
across all work items on the GPU. Local memory is a much faster
but usually smaller memory. It is shared between work items in a

given workgroup. Every work item has its own private memory and
is typically provided using very fast on-chip registers.

In order to effectively access memory on the GPU, programmers
should ensure that multiple work items read consecutive memory
elements when accessing the global memory. These type of ac-
cesses are coalesced by the hardware enabling a higher percentage
of peak memory bandwidth performance.

Both work-item divergence and the need for coalescing present
a significant challenge for the efficient implementation of sparse
and irregular algorithms on GPUs. Control flow irregularity presents
workloads where processing of individual data items requires spe-
cialized handling leading to control flow in the kernel which easily
triggers work-item divergence. Data irregularity presents a corre-
sponding problem for memory accesses, as the required data for
each work item may be spread across global memory precluding
opportunities for coalesced accesses and thus limiting the utilized
memory bandwidth.

We will discuss in section 4 how we apply optimisations to
achieve memory coalescing and avoid work-item divergence.

3. High level functional GPU programming
In this section, we present our approach to high level GPU pro-
gramming. We will describe how we extended this approach in the
next section for targeting irregular and sparse problems.

In [11] we introduced a novel code generation approach capa-
ble of generating highly optimized OpenCL code. This approach
is based on a set of high-level functional parallel primitives that
are used to express algorithms. Our compiler, turns these high-
level primitives into low-level ones that directly corresponds to the
OpenCL concepts.

The parallel patterns exposed in our approach for high level pro-
gramming are well known in the community and have proven to be
a valuable abstraction for parallel programming in numerous al-
gorithmic skeleton frameworks [3, 4, 10]. In our work we take a
different approach from the usual library implementation of skele-
tons. We have developed a pattern based compiler using a novel
compilation technique: starting from a high-level program, prov-
ably correct rewrite rules are applied to transform the high level
program into an semantically equivalent low level program from
which eventually OpenCL code is generated. This process is de-
scribed in detail in [11]. Choosing this rewrite-based compilation
approach has the advantage over fixed library implementations that
different OpenCL code can be generated for the same high level
expression in different circumstances. In [11] we show that this al-
lows us to achieve performance portability across different parallel
processors. Later in this paper we will see that it is beneficial to
choose between different OpenCL kernels depending on the irreg-
ularity of the input matrix.

3.1 Dot-product
The code listing in figure 1 shows how the computation of the dot
product of two vectors is expressed using our parallel patterns. The
computation is specified in the lines 4–5: first, the two input vectors
v1 and v2 are combined pairwise with the Zip pattern; then, the Map

1 val denseDotProduct = fun(
2 ArrayType(ElemT , N)),
3 ArrayType(ElemT , N),
4 (v1 , v2) => Reduce(add , 0, Map(
5 mult , Zip(v1 ,v2)))
6 )

Figure 1: The dense dot product computation expressed with func-
tional parallel patterns
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pattern is used to compute the product of every combined element;
and finally, the final result is computed by summing up all elements
using the Reduce pattern.

The code in figure 1 shows the usage of our current implemen-
tation as a domain specific language embedded in the functional
programming language Scala. Besides the actual computation, the
programmer also specifies the types of the input vectors including
their sizes. In the example, the first two lines specify that both vec-
tors must have the same, but statically unknown length (N). The
ElemT type represent the element type of the vector, which is typi-
cally integer or float.

3.2 Dense matrix vector multiplication
A key idea of parallel patterns is to reuse them as fundamental
building blocks when expressing larger problems. Figure 2 shows
how we reuse the denseDotProduct defined in figure 1 to express
dense matrix vector multiplication.

1 val denseMatrixVector = fun(
2 ArrayType(ArrayType(ElemT , M), N),
3 ArrayType(ElemT , M),
4 (matrix , vector) =>
5 Map(fun(row =>
6 denseDotProduct(row , vector)),
7 matrix) )

Figure 2: The high-level functional implementation of dense matrix
vector multiplication.

The expression is straightforward; matrix vector multiplication
can be seen as the application of the dot product computation for
every row combined with the vector. This is directly expressed in
line 5–7, where the denseDotProduct function is applied to each
row of the matrix using the Map pattern.

When investigating the types we can see that the matrix is
represented as an array of nested arrays. Therefore, mapping over
the outer array naturally gives access to each individual row.

3.3 Summary
Our compiler approach makes it is easy to compose and reuse ex-
isting programs, like the dense dot product. In addition the pro-
grammer does not have to commit to a particular OpenCL imple-
mentation but instead let the compiler combine and explore differ-
ent choices. For instance, the compilation process based on rewrite
rules can make different optimisation choices when the dot product
is on its own or as part of the matrix vector computation.

4. Sparse Matrix Vector Multiplication
This section presents the implementation of sparse matrix vector
multiplication using our high-level functional programming model.
This includes examples of optimisations that can be expressed with
our framework.

4.1 High-level functional representation
Figure 3 presents the high-level functional expression which im-
plements sparse matrix vector multiplication. As can be seen, it
is very similar to the expression corresponding to the dense case
seen in figure 2. Using our Map primitive, a sparse dot product
is performed between each row of the matrix and the input vec-
tor. In the dense scheme the subarrays represent dense rows of the
matrix, while in the sparse scheme the subarrays represent sparse
rows of the matrix. The sparse rows are encoded as arrays of tu-
ples of indices and values, which is similar to the ELLPACK format.
For instance, the sparse row [0,0,13,54,0,0,75,0] is encoded as

[(2,13),(3,54),(6,75)] .

1 val sparseMatrixVector = fun(
2 ArrayType(ArrayType(TupleType(Int , ElemT)),N),
3 ArrayType(ElemT , M),
4 (matrix , vector) =>
5 Map(fun(row =>
6 sparseDotProduct(row , vector)),
7 matrix) )

Figure 3: The high-level functional implementation of sparse ma-
trix vector multiplication.

Figure 4 shows the implementation of the dot product between
a sparse vector (the matrix row) and a dense vector. Similarly to
the dense version, each element of the sparse vector is multiplied
with the value of the corresponding elements in the dense vector.
Note that the number of elements in v1 (the sparse vector) might
be different from the number of elements in v2 (the dense vector).
Instead of using the Zip primitive, we need to lookup, for each
element of v1, the corresponding value in v2. The ArrayAccess
function performs the indirect array access to the dense vector v2
given the index stored in the sparse vector v1. Finally, after all the
matching elements have been multiplied together, a reduction sums
up all the value computed similarly to the dense dot product.

1 val sparseDotProduct = fun(
2 ArrayType(TupleType(Int , ElemT)),
3 ArrayType(ElemT , N),
4 (v1, v2) => Reduce(add , 0, Map(
5 fun((index , value) =>
6 mult(value , ArrayAccess(index , v2))),
7 v1))
8 )

Figure 4: The high level expression implementing sparse vector -
dense vector dot product

This correspondence shows that sparse operations can be im-
plemented by reusing the same primitives developed for the dense
case. We can, therefore, reuse the same mechanism presented
in [11] to explore the implementation space of sparse matrix op-
erations. This allows us to both fundamentally change algorithms
through simple rewrite rules, as well as implement complex optimi-
sations at a higher level. Instead of having one monolithic kernel,
we have a flexible abstract algorithm which we can tune and opti-
mise for given classes of sparsity and irregularity. The next section
illustrates some of the implementation choices we have started to
explore in this work which result in promising preliminary results.
Our end-goal goal is to fully explore, automatically, all the choices
typically encountered by implementers of high performance sparse
linear algebra.

4.2 Optimisations
This section now examines how a number of optimisations are
implemented and expressed within our framework. It also discusses
how some optimisations are best suited to particular classes of
matrices.

Array of structures vs structure of arrays The first optimisation
we describe is a transformation from an “array of structures” to a
“structure of arrays” data representation. Figure 5 shows the cor-
responding expression after applying this transformation. As can
be seen, the main difference from figure 3 is the extra param-
eters to the Zip on line 8 ( indices and values) which decom-
pose the original matrix of rows of tuples into two separate ma-
trices. The first matrix stores all the indices while the second one
stores all the corresponding values. Since the dot product func-
tion expects one row of tuples, we combine the matrices using
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1 val sparseMatrixVector = fun(
2 ArrayType(ArrayType(Int),N),
3 ArrayType(ArrayType(ElemT),N),
4 ArrayType(ElemT , M),
5 (indices , values , vector) =>
6 Map(fun(row =>
7 sparseDotProduct(row , vector)),
8 Map(Zip ,Zip(indices , values ))) )

Figure 5: Expression corresponding to the structure of array ver-
sion.

Map(Zip,Zip(indices , values ) on line 8 which is equivalent to the
original data representation of the matrix.

The advantage of using a compiler-based approach, as opposed
to a library-based approach, is two-fold. First the implementation
of the dot product does not need to change since the data input
is still in the expected format after the optimisation (the sparse
row is an array of tuples). Secondly, the expression on line 8 in
figure 5 does not actually produce any code when generating the
OpenCL kernel. This is implemented inside the compiler using a
view mechanisms, similar to the notion of views in a database. The
compiler tracks the information on how the data is combined and
produces the correct code when the data is actually accessed in the
dot product implementation. It generates an access to the first or
second array respectively, based on whether the index or the value
is being accessed.

This optimisation provides a speedup on the GPU in all cases
and brings the core data structure more in line with that used by the
state of the art library clSPARSE. This structure of arrays format
is in fact similar to the standard “compressed sparse row” format,
used by many sparse linear algebra toolkits. This example shows
that it is possible to encode more complex data structures by simply
composing arrays and tuples and by using a small set of functional
primitives.

Fusing maps and reductions in sparse/dense dot product An-
other common and general optimisation which we apply, is the fu-
sion of map and reduce, expressed using the following fusion rule:

Reduce(f, z) o Map(g) => Reduce(f o g)

This is easily derivable in our system [11], and presents an-
other simple, yet powerful optimisation, which allows us to gen-
erate OpenCL code similar to what an expert programmer might
write. Note that this rule is expressed using curried arguments and
using the function composition operator ◦. This optimisation is par-
ticularly useful inside the dot-product for instance where it prevents
the need for storing the intermediate result produced by the Map
function.

Mitigating irregularity through parallel sparse/dense dot prod-
ucts Our high-level functional programming model easily en-
ables nesting of parallelism. In the kernels we generate, we explore
two choices of parallelism:

• performing each dot product in parallel (row level parallelism,
or single level parallelism)

• parallelising the map and reduction components of the dot prod-
uct itself (dot product level parallelism, or two level paral-
lelism).

The exploration of multiple levels of parallelism is motivated
by the observation that mapping individual threads to rows (or
multiple rows to individual threads) suffered huge performance
penalties for highly irregular matrices. With the row level parallel
scheme, particularly long rows take significantly longer to process

than shorter rows, meaning that some threads take far longer to run
than others. When we map these threads to the GPU, we have two
choices: either map a small number of threads to each multiproces-
sor, or map as many as possible, neither option is ideal. In the first
case, long running threads tie up the entire multiprocessor, stop-
ping other threads from being processed on it, as well as severely
underutilising the parallelism available on each multiprocessor. In
the second case, long running threads again tie up the entire multi-
processor, but the lack of parallelism is not mitigated, as faster rows
are forced to run as “slowly” as a slow row they are scheduled with.

Our proposed solution to this problem, and a modification eas-
ily expressible in our system, is to divide each row of the matrix
into even sized chunks, and process each chunk in parallel. This
solves much of the irregularity problem, as each chunk presents
a consistent and regular workload, allowing the GPU to effec-
tively schedule them, allocating more resources to long rows, and
fewer to shorter rows. Figure 6 show how the dot product func-
tion can be rewritten in order to implement this choice. The inner

1 val sparseDotProduct = fun(
2 ArrayType(TupleType(Int , ElemT), M),
3 ArrayType(ElemT , N),
4 (v1, v2) => Reduce(add , 0,
5 Join ( Map(Reduce(
6 fun((acc , (index , value )) =>
7 add(acc ,
8 mult(value , ArrayAccess(index ,
9 v2)))),

10 Split(chunkSize ,
11 v1)
12 )))
13 ))

Figure 6: Parallel reduction in the dot-product.

Map(Reduce ,...) on line 4 performs several reductions in parallel
on different chunks of the sparse vector v1. The outer Reduce on
line 5 merges all the partial reduction to produce the final value
returned by the dot product function.

Coalescing memory access in parallel sparse/dense dot product
The above approach works well in practice, however the default
implementation results in uncoalesced memory accesses, as each
thread performs a map and reduction over a single chunk. In order
to coalesce the memory accesses, we use the ReorderStride prim-
itive to reorder each row with a stride as can be seen on line 11
in figure 7. The vector v1 is reordered based on a stride which

1 val sparseDotProduct = fun(
2 ArrayType(TupleType(Int , ElemT), M),
3 ArrayType(ElemT , N),
4 (v1, v2) => Reduce(add , 0,
5 Join ( Map(Reduce(
6 fun((acc , (index , value )) =>
7 add(acc ,
8 mult(value , ArrayAccess(index ,
9 v2)))),

10 Split(chunkSize ,
11 ReorderStride(M/v1))
12 )))
13 ))

Figure 7: Reordering the elements of a row within a parallel dot
product to ensure coalesced memory accesses.

is a function of the chunkSize and the number of rows. This al-
lowseach map over the subsequent split to perform memory ac-
cesses in a coalesced manner. This modifies the data access pat-
terns of each thread, such that instead of mapping over and reduc-
ing a contiguous set of memory, each thread performs its operations
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Matrix name Width Height Nonzeros Mean Var Min Max Domain Subdomain

1138 bus 1138 1138 2596 2.28 2.19 1 17 Graph Theory Power admittance Network
airfoil1 4253 4253 12289 2.89 0.33 0 6 Finite Element Methods 2D Problem
airfoil1 dual 8034 8034 11813 1.47 0.26 0 2 Finite Element Methods 2D Problem
as-735 7716 7716 13895 1.80 468.01 0 1432 Graph problem Computer Network
bcsstk18 11948 11948 80519 6.74 20.03 1 31 Finite element Methods Stiffness matrix
bcsstm25 15439 15439 15439 1.00 0.00 1 1 Finite element Methods Stiffness matrix
ca-AstroPh 18772 18772 198110 10.55 361.14 0 353 Graph Theory Collaboration Network
ca-GrQc 5242 5242 14496 2.77 24.26 0 56 Graph Theory Collaboration Network
ca-HepPh 12008 12008 118521 9.87 764.55 0 438 Graph Theory Collaboration Network
ca-HepTh 9877 9877 25998 2.63 15.95 0 64 Graph Theory Collaboration Network
cis-n4c6-b1 21 210 420 2.00 36.17 0 20 Topology Simplicial complexes from Homology
diag 2559 2559 4092 1.60 0.24 0 2 2D Grid Tree
DK01R 903 903 11766 13.03 27.92 3 19 Comp. Fluid Dynamics 1D Turbulent Flow
examplemm 5 5 8 1.60 0.30 1 2 An example matrix
G11 800 800 1600 2.00 0.27 0 4 Torus Matrix +1/-1 Uniform distribution
G32 2000 2000 4000 2.00 0.12 0 4 Torus Matrix +1/-1 Uniform Distribution
G48 3000 3000 6000 2.00 0.07 0 4 Torus Matrix +1/-1 Uniform Distribution
G57 5000 5000 10000 2.00 0.06 0 4 Torus Matrix +1/-1 Uniform Distribution
G65 8000 8000 16000 2.00 0.05 0 4 Torus Matrix +1/-1 Uniform Distribution
G1 800 800 19176 23.97 215.54 0 62 Random Matrix 3% Uniform Distribution
G43 1000 1000 9990 9.99 41.76 0 33 Random Matrix 1% Uniform Distribution
G55 5000 5000 12498 2.50 4.62 0 12 Random Matrix 0.05% Uniform
G60 7000 7000 17148 2.45 4.32 0 13 Random Matrix 0.035% Uniform distribution
G14 800 800 4694 5.87 139.36 0 129 Random Matrix Decreasing Average Degree
G51 1000 1000 5909 5.91 174.02 0 154 Random Matrix Decreasing Average Degree
G35 2000 2000 11778 5.89 193.69 0 206 Random Matrix Decreasing Average Degree
G58 5000 5000 29570 5.91 251.87 0 558 Random Matrix Decreasing Average Degree
G63 7000 7000 41459 5.92 267.24 0 586 Random Matrix Decreasing Average Degree
geom 7343 7343 11898 1.62 17.01 0 101 Graph Theory Collaboration Network
lung1 1650 1650 7419 4.50 2.94 2 8 Graph Theory Transfer Network
lung2 109460 109460 492564 4.50 3.76 2 8 Graph Theory Transfer Network
mk12-b1 66 1485 2970 2.00 86.06 0 45 Topology Simplicial complexes from Homology
mk9-b1 36 378 756 2.00 38.10 0 21 Topology Simplicial complexes from Homology
n2c6-b2 105 455 1365 3.00 30.07 0 13 Topology Simplicial complexes from Homology
n3c5-b3 120 210 840 4.00 12.06 0 7 Topology Simplicial complexes from Homology
n3c6-b2 105 455 1365 3.00 30.07 0 13 Topology Simplicial complexes from Homology
n4c6-b1 21 210 420 2.00 36.17 0 20 Topology Simplicial complexes from Homology
n4c6-b2 210 1330 3990 3.00 48.04 0 19 Topology Simplicial complexes from Homology
p2p-Gnutella05 8846 8846 31839 3.60 26.49 0 79 Graph Theory Peer to Peer Network
Trefethen 20 20 20 89 4.45 1.84 1 6 Numerical Analysis Diagonal Matrix with Primes
Trefethen 200 200 200 1545 7.73 2.13 1 9 Numerical Analysis Diagonal Matrix with Primes
Trefethen 2000 2000 2000 21953 10.98 2.01 1 12 Numerical Analysis Diagonal Matrix with Primes
Trefethen 20000 20000 20000 287233 14.36 2.23 1 16 Numerical Analysis Diagonal Matrix with Primes
Trefethen 200b 199 199 1536 7.72 2.13 1 9 Numerical Analysis Diagonal Matrix with Primes
Trefethen 20b 19 19 83 4.37 1.80 1 6 Numerical Analysis Diagonal Matrix with Primes
Trefethen 300 300 300 2489 8.30 2.16 1 10 Numerical Analysis Diagonal Matrix with Primes
Trefethen 500 500 500 4489 8.98 1.99 1 10 Numerical Analysis Diagonal Matrix with Primes
Trefethen 700 700 700 6677 9.54 2.22 1 11 Numerical Analysis Diagonal Matrix with Primes
wiki-Vote 8297 8297 103689 12.50 889.35 0 457 Graph Theory Voting Network

Table 1: Matrices used as input in our experimental evaluation.

over a strided set of memory locations. Note that the ReorderStride
function does not generate any code in our compiler. Instead, it is
implemented using the same view mechanisms mentioned earlier.
The compiler simply tracks this information and later generates the
correct array indexing when the data is accessed.

4.3 Summary
The techniques we present above, although not entirely novel,
provide us with a large range of potential optimisations which we
may apply to a our sparse matrix vector multiplication benchmark.
More importantly, the techniques are independent of each other,
and composable, allowing us to apply them in different scenarios.
Instead of a small number of hand optimised kernels, we are able
to provide the building blocks to adapt a kernel to whatever input
it may process, and thus handle a greater range of possible input
types than a monolithic set of kernels would allow. We believe
that this composable and flexible has the potential to produce high
performance code. As we will see in the next section, we have
produced some encouraging preliminary results which demonstrate
the potential of our approach.

5. Evaluation
This section presents our evaluation which focuses on two main
aspects: we first want to confirm that a compositional compiler
based approach captures a space of generated kernels which is
broad enough to capture the variants necessary to adapt to the
irregularity in input matrices. Secondly, we want to investigate the
performance of our tuned kernels compared to a highly tuned ad-
hoc implementation of sparse matrix operations: clSparse.

5.1 Experimental setup and evaluation methodology
OpenCL Kernels We generated 41 OpenCL kernels with differ-
ent implementation strategies and optimization choices applied.

Datasets We used a set of 50 matrices drawn from the University
of Florida sparse matrix collection [7]. Our selection aimed to
target a wide range of problem domains, as well as a wide range
of irregularity. Table 1 gives a list of the matrices used, along with
some characterizing statistics including the domain the matrix is
drawn from.
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Figure 8: The performance distributions of two kernels, soaGlbPar and soaWrgLcl, showing how each kernel performs best on matrices with different
variances. The dotted lines are a smoothed average done with local polynomial regression fitting.

Evaluation platform We measured performance on a single ma-
chine, running Scientific Linux 7.1 and equipped with a 32 core
Intel Xeon E5-2640 CPU and 64GB main memory. Our machine
is equipped with a NVIDIA K40m GPU, with OpenCL version 1.2
and CUDA 7.5.9.

Statistical analysis We refer to a combination of an individual
kernel, a single matrix, and a single global and single local size
as a configuration. For each configuration evaluated, we report the
average of at least 30 measurements to minimize the influence of
noise.

We focus our measurement on the kernel execution time, ex-
cluding any data transfer or host overhead, using the profiling API
provided by OpenCL.

Comparing to clSPARSE We compared our results to the open-
source sparse linear algebra toolkit clSPARSE framework [1]
which is developed by AMD and Vratis Ltd. We selected clSPARSE
for comparison for a number of reasons: firstly, as it is open source,
we were able to examine the source kernels and execution infras-
tructure, allowing us to investigate the optimisation techniques ap-
plied. Secondly, unlike many other sparse linear algebra toolkits,
clSPARSE is written using the OpenCL programming language,
allowing for a fair comparison, while a comparison to, e. g. cuS-
PARSE which is implemented in CUDA, may be influenced by the
chosen implementation language.

5.2 Tuning kernels for irregularity
Figure 8 shows how two of our automatically generated kernels
have different performance characteristics depending on the irreg-
ularity of the input matrices. In this figure, we compare the per-
formance of two generated kernels, soaGlbPar and soaWrgLcl,
across a set of matrices ordered by the variance in elements per
row, from low variance on the left to high variance on the right.
The kernel soaGlbPar performs a sequential dot product over each
row and only exploits parallelism across rows, while the kernel
soaWrgLcl performs a dot product, with a parallel map but a se-
quential reduction for each row. We can clearly observe from the
figure that the first kernel is beneficial for matrices with low vari-
ance of the number of elements per row, where the second ker-

nel performs best for a higher, but not too high, level of variance.
For example, the kernel soaGlbPar clearly performs best on ker-
nels with a very low level of irregularity (e.g. the bcsstm25 ma-
trix), while the kernel soaWrgLcl performs best on matrices with
a medium degree of irregularity (e.g. the Trefethen 200 matrix).

5.3 Performance comparison against clSPARSE
Figure 9 shows the performance of our best automatically gener-
ated kernel selected for each input matrix compared to the perfor-
mance of the manually tuned clSPARSE. Different selected kernels
are shown in different colors.

Overall, the performance of our generated kernels is mixed: in
some cases on particular – mostly regular – matrices, we are able
to reach a speedup of up to 1.8x compared to clSPARSE. For the
majority of the more regular matrices shown in the left half of the
plot we are either on par, or faster than clSPARSE. Here mostly the
same kernel is selected, but there exists interesting outliers, e.g. for
the Trefethen 20000 matrix, where a different kernel shows very
good performance.

For the more irregular matrices on the right side the perfor-
mance is significantly worse. Although we show that different ker-
nels show the highest performance for different input matrices, the
best generated kernels for these irregular matrices are still lower
performing than clSPARSE.

Figure 9 illustrates this trend very clearly: there is a clear corre-
spondence between the performance of the generated kernels, and
the variance of the processed matrices.

5.4 Limitations
Overall, there appears to be good evidence to suggest that our
compiler-based and compositional approach is sound and promis-
ing. However, as this is work-in-progress there exist a number of
limitations with our current implementation which are especially
relevant for sparse and irregular problems.

The first limitation is the lack of ragged arrays within our frame-
work. This limits the size of matrices we can process, as we cur-
rently allocate the same amount of storage for each row, which
is based on the size of largest row. This is especially a problem
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Figure 9: The maximum performance our generated kernels achieve in comparison to clSPARSE. The performance is on par, or exceeds clSPARSE for just
under half the matrices evaluated. There is however a clear downward trend in performance as irregularity increases. The dotted lines are a smoothed average

done with local polynomial regression fitting.

on highly irregular matrices, as each row is currently allocated the
same space as the longest.

The second limitation of our current implementation is that the
mapping of parallelism is currently performed statically and there is
no support for dynamic load balancing. All parallel patterns assume
that each unit of work is roughly equal in difficulty, or time to
process. For example, a map pattern assumes that each thread will
be presented with a roughly equal workload. This assumption is
fairly easily broken by highly irregular workloads, which incurs a
significant performance penalty as we have seen. In future work
we want to address this by implementing additional primitives
capable of mapping the parallelism in a dynamic fashion to achieve
load balancing. This would allow our system to choose between
different static and dynamic load balancing schemes. For example
the parallelism at the row level could be expressed statically while
the processing of the row elements could be done dynamically.

5.5 Analysis of Results
We believe that our initial results are already promising, and give
us a very solid base for future development as our system evolves.

With respect to our first goal, we have clearly demonstrated
our ability to generate kernels whose relative behaviour is sensitive
to identifiable variations in properties of the input matrix (in this
case irregularity). While the 41 kernels explored were selected by
intuition, they were generated automatically. The space of potential
kernels is much larger, and automated search of such spaces is an
orthogonal topic, already widely explored in the compiler world.

With respect to our second goal, we have demonstrated that our
generated kernels can sometimes outperform a state of the art li-
brary. Where they fail to do so we have an understanding in terms
of irregularity of when this is likely to occur, and of the correspond-
ing optimizations which are missing from our current framework.
The strength of the compositional nature of our system is that these
can be added subsequently and independently, in contrast to the dis-
ruptive impact they would have on ad-hoc kernel implementations.

6. Related work
Sparse linear algebra on GPUs has been studied before by numer-
ous projects. Mostly implementing ad-hoc solutions for particular
GPUs or architectures.

GPU libraries for sparse linear algebra Bell and Garland [2] ex-
plore the design of efficient sparse matrix vector multiplication ker-
nels using CUDA for a GeForce GTX 285 GPU, achieving good
absolute performance and peak bandwidth utilization for that ar-
chitecture. The experiments show that different sparse data for-
mats and correspondingly tuned algorithms have affinity to differ-
ent classes of sparsity and irregularity. In contrast to our work, all
coding and tuning is done manually.

Daga and Greathouse [6] tackle sparse matrix vector multipli-
cation for the compressed spare row format, implementing adap-
tive schemes which choose between three algorithmic strategies on
a row-by-row basis. The algorithms are optimised for short, long
and very long rows respectively and incorporate other tweaks (for
example, a logarithmic depth reduction strategy) as deemed appro-
priate. These are reported to outperform previously state-of-the-art
GPU SMV implementations. As with Bell and Garland, the imple-
mentation, and now also the online algorithmic choice heuristic, are
hand-coded.

Besides clSparse, which we already discussed in the evaluation
section, there exist NVIDIAs CUDA Sparse Matrix library (cuS-
PARSE) [8]. This library is a CUDA specific collection of sparse
linear algebra routines, including sparse matrix vector multiplica-
tion. It supports a range of dense and sparse formats, including co-
ordinate, compressed sparse row, compressed sparse column, and a
hybrid format.

High-level GPU code generation Petabricks [9] is a program-
ming language letting the programmer specify alternative imple-
mentations of an algorithm. The compiler and runtime automati-
cally try to choose the most suitable implementation.

Delite [13] is a system that enables the creation of domain-
specific languages which are automatically compiled to multi-core
CPU and GPU code. Parallelism is expressed using parallel patterns
but, unlike our system, neither Delite nor Petabricks offer any
support for sparse and irregular problems.

7. Conclusions
The results presented in this paper represent an encouraging val-
idation of our underlying research programme. They demonstrate
that a compositional compiler and language based approach to the
exploitation of parallel patterns can be, at the very least, compet-
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itive with hand-coded libraries, and similarly sensitive to the in-
put characteristics which determine the most appropriate optimiza-
tions. This is a strong result, whose benefits will become more pro-
nounced as we expand our range of patterns and optimizations. Es-
sentially, through orthogonality the work required to add each new
capability to our system is linear, but through composition its po-
tential impact on the quality of the our results will be multiplicative.
This contrasts sharply with the effort required and impact achieved
to systematically retrofit new tricks to existing libraries. In the short
term, we plan to expand our system to close the performance gaps
which remain in certain areas of the SMV case study. In the longer
term, we will extend to new patterns and domains, while continuing
to benefit from the power of composition.
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