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Abstract. We advocate the use of formal patterns and transformations
for programming modern many-core processors like Graphics Process-
ing Units (GPU), as an alternative to the currently used low-level, ad
hoc programming approaches like CUDA or OpenCL. Our new contri-
bution is introducing an intermediate level of low-level patterns in order
to bridge the abstraction gap between popular high-level patterns (map,
fold/reduce, zip, etc.) and imperative, executable code for many-cores.
We define our low-level patterns based on the OpenCL programming
model which is portable across parallel architectures of different vendors,
and we introduce semantics-preserving rewrite rules that transform pro-
grams with high-level patterns into programs with low-level patterns,
from which executable OpenCL programs are automatically generated.
We show that program design decisions and optimizations, which are
usually applied ad-hoc by experts, are systematically expressed in our
approach as provably-correct transformations for high- and low-level pat-
terns. We evaluate our approach by systematically deriving several dif-
ferently optimized OpenCL implementations of parallel reduction that
achieve performance competitive with OpenCL programs which are man-
ually written and highly tuned by performance experts.

Keywords: Parallel programming, rewrite rules, algorithmic patterns,
GPU, OpenCL, code generation, skeletons, transformations

1 Motivation and Related Work

Although systems with many-core accelerators, like Graphics Processing Units
(GPUs) and Intel Xeon Phi are an inherent part of modern high-performance
computing, achieving high application performance on these systems remains
a challenging task even for experienced programmers. Usually, an initial, in-
tuitively correct version of an application is iteratively improved by applying
ad-hoc optimizations using experience-motivated “rules of thumb”. Writing high-
performance code for many-core architectures requires explicit management of
available resources which nowadays comprise of: 1) a hierarchy of several hun-
dreds or even thousands of processing units (cores) able to execute multiple con-
current threads which are additionally organized in groups, warps, etc., and 2)
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a memory hierarchy consisting of multiple cache levels, software-managed local
memory for groups of threads, and global memory. Therefore, high-performance
code is usually written by experts using low-level programming approaches like
OpenCL [10] or CUDA [8] which require the programmer to explicitly manage
both thread and memory hierarchies.

The challenges of the state-of-the-art GPU programming are demonstrated
in the recent GPU programming guide [8], where performance experts of Nvidia
Corp. consider an allegedly very simple application – the reduction of an array
(e. g., the summation of array elements). In order to achieve high performance on
GPUs, they develop seven differently optimized implementations for this simple
example . The eventually achieved speedup is up to 30 times compared to the
initial version, which on the one hand emphasizes the importance of program
optimizations for GPUs, and on the other hand demonstrates how difficult and
hardware-specific the optimization process is, even for simple applications.

In this paper, we propose a systematic approach to program development
for systems with GPUs. A program is expressed using high-level algorithmic
patterns and then systematically transformed into a program with novel low-level
patterns, from which high-performance GPU code is automatically generated.

Our approach is inspired by early work on transformational programming [3–
5]. We improve the state of the art by formally introducing low-level, OpenCL-
specific patterns and formalizing the device- and application-specific transfor-
mations for parallel GPU programs, which before were only informally described
in optimization guides of hardware vendors like [8]. The Lift framework [13, 16]
provides a prototype implementation of our low-level patterns and rewrite rules,
and it demonstrates that they work well for a broad class of real-world ap-
plications. There exist libraries based on the concept of algorithmic patterns
(skeletons [7]): SkelCL [15], MUESLI [11] or FastFlow [1]. While they rely on
hard-coded and hardware-specific implementations with a fixed set of optimiza-
tions and are therefore inherently not performance-portable, our approach allows
to systematically derive optimizations by rewrite rules which enable applying
different optimizations for different devices. Functional approaches like Acceler-
ate [6], Harlan [9] and Obsidian [17] rely either on predefined implementations or
on time-consuming code analysis. In contrast, our approach expresses hardware-
relevant paradigms of OpenCL in functional code which allows us to express
low-level optimizations using rewrite rules.

In this paper, we make the following main contributions: in Sections 2 and 3, we
introduce a novel transformation process to systematically develop programs for
parallel systems using high-level patterns, and in Section 4, we formalize low-level
optimizations as rewrite rules allowing the systematic derivation of optimized
programs from a high-level program. In Section 5, we experimentally evaluate
programs generated by our approach: and we demonstrate their performance in
comparison to high-performance libraries like Nvidia cuBLAS [12].
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2 Our Approach: Patterns and Transformations

We use well-known high-level patterns like map and reduce, also known as
algorithmic skeletons [7], to express applications as computations on (multi-
dimensional) arrays. Although these patterns themselves are simple, they can
specify many real-world applications like N-body-simulations [16] or medical
imaging [14]. In our approach, the transformation process systematically rewrites
a high-level pattern-based program describing what to compute into a low-level
pattern-based program describing how the computation is organized within the
OpenCL programming model. The resulting low-level program is used to gen-
erate executable OpenCL code. We use OpenCL as our low-level programming
model since it is portable on a broad variety of architectures including GPUs,
multicore CPUs, Intel Xeon Phi, and FPGAs.

High-level 
Program

Algorithmic Patterns

map

reduce

split

...

Low-level 
Program

OpenCL Patterns

toLocal

mapWorkgroup

...Algorithmic

1

OpenCL-
specific

2

Rewriting

OpenCL 
Program

Fig. 1: Transformation approach: a high-level, pattern-based program is systemati-
cally transformed into a low-level program in two phases: 1. Algorithmic Rewriting:
the high-level program is decomposed in sub-parts that can be executed in parallel.
2. OpenCL-specific Rewriting: the decomposed program is transformed and optimized
using OpenCL-specific patterns, from which OpenCL code is generated.

Figure 1 shows how a high-level program is transformed to high-performance
OpenCL code in a two-phase transformation process:

1. Algorithmic Rewriting In the first phase, we rewrite the algorithmic structure
of a high-level program: we decompose it into parts which can be executed
in parallel. For example, instead of reducing an array in one step, we derive a
program that expresses the reduction as a tree-based reduction (processing parts
in parallel) followed by a final reduction as suggested by the Nvidia experts in [8].

2. OpenCL-Specific Rewriting In the second phase, we transform the decomposed
high-level program to a program with low-level, OpenCL-specific patterns by
means of rewrite rules that map high-level patterns to the OpenCL’s thread
hierarchy and data to the OpenCL’s memory hierarchy. Efficient OpenCL code
can be automatically generated from the resulting low-level program.

3 Algorithmic Patterns and Rewriting

Our high-level patterns are similar to those used in functional programming
approaches [3,4], which allows us to reuse already proved rewrite rules. Compared
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to existing languages and formalisms, we use only few selected patterns for which
we can generate high-performance parallel code. This allows us to limit the
variety of required rewrite rules while providing an expressive enough language
to develop a broad class of high-performance applications.

3.1 High-Level Algorithmic Patterns

All our patterns are defined as (higher-order) functions on arrays. An array xs of
length n containing elements xi is denoted as [x0, . . . , xn−1]. Higher-dimensional
data structures like matrices or cubes are represented as nested multidimen-
sional arrays. Instead of using recursive cons-lists, as used for example in the
BMF, we define our patterns on arrays because we target the generation of high-
performance OpenCL codes which work on plain C-arrays. We use a notation
similar to the BMF and denote function application by a whitespace: f x. We
use the ◦ operator to denote function composition which associates to the right,
e. g., (f ◦ g) x = f (g x), and has a lower precedence than function application
which associates to the left, e. g., f x ◦ g y is read as (f x) ◦ (g y).

Definition 1 (High-Level Algorithmic Patterns).

map f [x0, . . . , xn−1] = [f x0, . . . , f xn−1] (1)

reduce (⊕) [x0, . . . , xn−1] = [x0 ⊕ · · · ⊕ xn−1] (2)

zip [x0, . . . , xn−1] [y0, . . . , yn−1] = [〈x0, y0〉, . . . , 〈xn−1, yn−1〉] (3)

split m [x0, . . . , xn−1] = [[x0, . . . , xm−1], . . . , [xn−m−1, . . . , xn−1]] (4)

join [[x0, . . . , xm−1], . . . , [xn−m−1, . . . , xn−1]] = (5)

[x0, . . . , xm−1, . . . , xn−m−1, . . . , xn−1]

The map pattern applies a unary function to all elements of an array. reduce
combines all elements of an array using an associative binary operator and re-
turns a singleton array. Returning a singleton array instead of a scalar value
simplifies the formulation of some rewrite rules. The zip pattern combines two
arrays of the same length element-wise to an array of pairs. The split pattern
splits its input into chunks of the specified size m, i. e., it adds another array
dimension. The join pattern, also known as concat, reduces the dimension of a
given array by flattening its two outermost dimensions into one.

3.2 Algorithmic Rewrite Rules

In order to systematically transform high-level programs in a semantics-preserving
way, we define a set of rewrite rules, also known as algebraic identities, which
we denote as A = B. In an arbitrary program, the left-hand side expression (A)
of a rule can be replaced with the right-hand side expression (B) and vice versa.

For example, the map-distribution rule [4] states that map distributes over
function composition:

map f ◦map g = map (f ◦ g) (6)
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Fig. 2: Tree reduction rule: a reduction of m elements (left) is the same as first reducing
m/k elements and then reducing the temporary results (right).

The map-promotion rule [4]:

map f ◦ join = join ◦map (map f) (7)

describes handling of two-dimensional arrays: instead of applying f to the flat-
tened array (produced by join) it is also possible to apply (map f) on each outer
array and join the resulting arrays afterwards. A variation of this rule allows to
explicitly introduce an additional array dimension using split :

map f = join ◦map (map f) ◦ split m (8)

Adding additional dimensions using this rule will become useful when we map
computations to the hierarchically structured OpenCL programming model.

Rules can also define relations between more complex compositions of pat-
terns as the following tree-reduction rule, provided that k divides m:

join ◦map (reduce (⊕)) ◦ split m = join ◦map (reduce (⊕)) ◦ split k ◦
join ◦map (reduce (⊕)) ◦ split m

k

(9)

Figure 2 visualizes the tree-reduction rule. The left-hand side shows a single
reduction step that consists of: 1) dividing the input into disjoint chunks using
split ; 2) reducing all chunks independently using map (reduce (⊕)); 3) combining
the results using join.

The right-hand side shows two reduction steps, where the first step reduces
the array from n elements to an array of n

m/k , before the second step reduces the

array to n/m elements, which corresponds to the right-hand side (9). Applying
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the tree-reduction rule recursively leads to multiple steps that reduce the input
array in a tree-like fashion. Computing reductions as tree-based reductions is
one of the optimizations suggested by the Nvidia experts in [8].

A list containing more rewrite rules is given in appendix A.

Correctness of Rewrite Rules All of the rules in this paper are provably correct
with respect to a standard functional denotational semantics of our patterns
as defined in [13]. Applying semantics-preserving rewrite rules to pattern-based
programs allows us to guarantee the correctness of the derivation process, thus,
a derived program always computes the same result as the original.

An example of proving (25) using equational reasoning is given in appendix B.

3.3 Transformation Using Algorithmic Rewrite Rules

Let us consider an example of how the summation of the elements of an array
is systematically transformed using rewrite rules starting from the high-level
program (HLP): reduce (+). We deliberately choose this concise example (which
is nevertheless non-trivial for implementing on GPUs as shown in [8]) to discuss
our formal approach in depth.

In the following, we use a superscript to denote the composition of the same
function, e.g. (f ◦ f ◦ f) = f3. Starting from the high-level program, we system-
atically perform the following transformations:

reduce (+) (HLP)

{ (25) in Appendix A}

= reduce (+) ◦ join ◦map (reduce (+)) ◦ split m

{ (25) in Appendix A}

= reduce (+) ◦ join ◦map (

reduce (+) ◦
join ◦map (reduce (+)) ◦ split m

) ◦ split m

{ (9) }

= reduce (+) ◦ join ◦map (

reduce (+) ◦
join ◦map (reduce (+)) ◦ split 2 ◦
join ◦map (reduce (+)) ◦ split m/2

) ◦ split m

{ (9) }

= reduce (+) ◦ join ◦map (

reduce (+) ◦
(join ◦map (reduce (+)) ◦ split 2)2 ◦
join ◦map (reduce (+)) ◦ split m/4

) ◦ split m
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{(9) applied (logm)− 2 times}

= reduce (+) ◦ join ◦map (

reduce (+) ◦ (join ◦map (reduce (+)) ◦ split 2)logm (TP)

) ◦ split m

Interestingly enough, our transformed program (TP) follows the algorithmic
structure of the first version of the parallel reduction described by the Nvidia
experts in [8]. The parameter m is an arbitrary value (as long as it divides the
size of the input) used to split the input into chunks of size m, e. g., m = 128
as suggested in the Nvidia example. The input is divided by split into distinct
chunks; then each chunk is iteratively reduced into a single temporary result
by pairwise combining and reducing neighboring elements; finally, all temporary
results, i.e., the sums of all chunks, are summed up as indicated by the leftmost
reduce.

We continue with the obtained transformed program (TP) for the parallel re-
duction in the next section and further transform it into a program with OpenCL-
specific patterns. The fully optimized low-level program and the OpenCL code
generated from it are presented and evaluated at the end of the paper.

4 OpenCL-specific Patterns and Rewriting

In this section, we introduce low-level, OpenCL-specific patterns. They explicitly
specify how high-level programs are mapped onto the OpenCL programming
model, i. e., how computations are assigned to OpenCL’s thread hierarchy, and
how data are stored in OpenCL’s memory hierarchy. Furthermore, we introduce
rewrite rules that transform a high-level program into a program using low-level
patterns, which is ultimately transformed into executable OpenCL code.

4.1 Exploiting the Thread Hierarchy using Low-Level Map Patterns

OpenCL [10] is currently a de-facto standard for portable programming of sys-
tems with multi- and many-core processors. The OpenCL model differentiates
between a host, in our case a CPU, and a device, e. g., a GPU. The parallel execu-
tion of a program, called kernel, is performed on the device by multiple threads
in the OpenCL’s thread hierarchy: threads, called work-items, are organized in
work-groups. Computations within a work-item are performed sequentially. Each
work-item has two IDs: a unique global-id and a local-id which is unique within
the work-item’s work-group; work-groups have unique IDs themselves. The IDs
allow to exploit thread hierarchy using either only global IDs and therefore work-
items directly, or using work-groups and local IDs within them.

Nvidia GPUs add a third level to the thread hierarchy: work-groups are fur-
ther divided into so-called warps, i. e., groups of 32 work-items that are called
lanes and are executed together in a lock-step manner, i. e., all lanes execute the
same instruction at the same time. Although warps and lanes are not captured
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Fig. 3: Visualization of the mapGlobal pattern: The input is divided among available
work-items which apply the given function to their assigned elements

by the OpenCL 1.2 standard, it is performance-critical to optimize the warp ex-
ecution of an OpenCL program for Nvidia GPUs: in particular, since work-items
of the same warp are implicitly synchronized, the costly barrier synchronization
can be avoided. The current practice of GPU programming requires that low-
level, device-specific optimizations are carefully applied by the experts with spe-
cific knowledge of the target architecture. We propose low-level, OpenCL-specific
patterns and rewrite rules that can introduce such low-level optimizations sys-
tematically.

We start by introducing several low-level variants of the high-level map pat-
tern. Each of these low-level patterns represents a possible realization of the
high-level map semantics (1) using the different levels of the OpenCL’s thread
hierarchy. Our first pattern – mapGlobal – specifies how m work-items, identified
by their global IDs, apply function f to all n elements of an array in parallel:

mapGlobalm f [x0, . . . , xn−1] = [y0, . . . , yn−1], where yi = f(i mod m) xi (10)

Here, we annotate function f with a subscript indicating which work-item com-
putes which element: e. g., f0 x0 denotes that the work-item with the global ID =
0 applies function f to element x0. Definition (10) specializes the definition (1)
of the high-level map by prescribing which work-items perform computations.
We omit in mapGlobal the subscript m that specifies the number of work-items,
when all available work-items take part in the computation.

Figure 3 shows two possible situations of using the mapGlobal pattern. In
the simplest case on the left-hand side, the number of work-items equals the size
of the input (m = n), such that each work-item applies f to the input element
whose index in the array equals the work-item’s global ID. If there are fewer
work-items than input elements (m < n), as on the right-hand side of Figure 3,
then all work-items start applying f to the m leftmost elements in the array and
then proceed to the next m elements, until f is applied to all input elements.

Figure 4 shows the OpenCL pseudo-code which implements mapGlobal : a
for-loop iterates over the global IDs and applies function f to all input elements.

Our next patterns – mapWorkgroup and mapLocal – are used to exploit the
two-level thread hierarchy of work-groups and work-items in OpenCL. These pat-
terns are defined similarly to mapGlobal , with the difference that the subscript
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mapGlobal f xs

⇓
for (int g_id = get_global_id(0); g_id < n; g_id += m) {
output[g_id] = f ( xs[g_id] ); }

Fig. 4: OpenCL pseudo-code implementing definition (10) of mapGlobal
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Fig. 5: Valid nestings of low-level maps expressing the OpenCL thread hierarchy.

of f corresponds to the work-group ID and local work-item ID within the work-
group, correspondingly. The subscript m defines the number of work-items in
a work-group for mapLocal and the number of work-groups for mapWorkgroup.
To respect the OpenCL thread hierarchy, the mapLocal pattern can only occur
nested in the mapWorkgroup pattern. The OpenCL implementation pseudo-code
for mapLocal and mapWorkgroup is almost identical with the code of mapGlobal
in Figure 4. The only difference is that the call to get global id is replaced
with a corresponding call to obtain the local or work-group ID.

For Nvidia GPUs, we utilize the additional, third level of the thread hier-
archy by introducing two patterns, mapWarp and mapLane, defined similar to
the mapGlobal pattern. For mapWarp, the subscript of f corresponds to the
warp ID which is calculated as blocal id/32c. In case of mapLane, the subscript
of f corresponds to the ID of a lane which is calculated as (local id mod 32);
furthermore, mapLane always has to be nested in a mapWarp.

Finally, the mapSeq pattern expresses map computed sequentially.
Figure 5 provides an overview of the introduced low-level map variants and

visualizes the nestings of them which respect the OpenCL thread hierarchy. To
enforce this nesting structure, we introduce a set of rewrite rules to transform
nestings of the high-level map pattern into equivalent low-level expressions:

map → mapGlobal (11)

map (map f)→ mapWorkgroup (mapLocal f) (12)

| mapGlobal (mapSeq f)

map (map (map f))→ mapWorkgroup (mapWarp (mapLane f)) (13)

| mapWorkgroup (mapLocal (mapSeq f))

map (map (map (map f)))→ mapWorkgroup (mapWarp ( (14)

mapLane (mapSeq f)))
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4.2 Exploiting the Memory Hierarchy using Low-Level Patterns

In the following, we introduce a collection of low-level patterns to utilize OpenCL’s
memory hierarchy consisting of four disjoint memory spaces: global, local, pri-
vate, and constant memory. The global and constant memory are available to
all work-items executing a kernel and correspond to the GPU’s main memory.
The local memory is shared by all work-items of a work-group and corresponds
to the fast on-chip memory of a GPU. The private memory is owned by a single
work-item and corresponds to the registers of a GPU. Accessing the small pri-
vate and local memory is several hundred times faster than accessing the larger
global memory. Therefore, efficient utilization of the GPU’s memory hierarchy is
mandatory in order to achieve high performance.

To make the different memory spaces explicit in our low-level programs, we
extend the array type with a memory space notation: e. g., [A]globaln denotes the
type of an array with n elements of type A residing in global memory. The global
memory is the default memory space for arrays in OpenCL and input arrays are
always allocated in global memory.

We introduce low-level patterns to allow the programmer to change the mem-
ory space. In particular, they allow work-items of a work-group to copy data
from the global memory to the fast local memory, which is a well-known opti-
mization in OpenCL that can significantly speed up the execution of a kernel.
The toLocal pattern is defined as follows for an arbitrary memory space M :
toLocal : [A]Mn → [A]localn . Intuitively, this pattern takes an array located in an
arbitrary memory space and returns the same array stored in the local mem-
ory. The toLocal pattern is, therefore, a hint to our code generator to copy the
array into the GPU’s local memory space. The toGlobal and toPrivate patterns
are defined analogously, allowing the utilization of the corresponding memory
spaces. We do not introduce a toConstant pattern, because the constant memory
is read-only.

For example, consider an array xs of type [[A]4]global2 . The following program
applies f to all elements using two work-groups with four work-items per group,
utilizing local memory and writing the result into the global memory:

ys = mapWorkgroup2 (

toGlobal ◦ // copy to global memory

mapLocal4 f ◦ // apply f in local memory

toLocal // copy to local memory

) xs

The following rewrite rules specify how the low-level memory patterns can
be used together with the previously introduced low-level map patterns:
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mapWorkgroup f → mapWorkgroup (toGlobal ◦ f) (15)

| mapWorkgroup (f ◦ toLocal)

mapLocal f → toGlobal ◦mapLocal f (16)

| mapLocal f ◦ toPrivate

mapGlobal f → toGlobal ◦mapGlobal f (17)

| mapGlobal f ◦ toPrivate

mapLane f → toGlobal ◦mapLane f (18)

| mapLane f ◦ toPrivate

These rules allow individual work-items to use their private memory, and (15)
describes the possibility to use the local memory for computations in a work-
group (the use of local memory outside a workgroup is forbidden in OpenCL). To
generate a valid OpenCL kernel, the final result of a kernel has to reside in the
global memory to be accessible from the host, therefore, a toLocal or toPrivate
has to be followed by a toGlobal in a correct low-level program.

As our final low-level pattern we introduce reorderStride which enforces a
special reordering of arrays in global memory, for m = s× n, as follows:

reorderStride s [x0, . . . , xn−1] = [y0, . . . , yn−1], where

yi = x((i−1) div n+s×((i−1) mod n))

(19)

reorderStride 4 xs

xs
x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

m=2, s=4, n=8

Fig. 6: The reorderStride pattern: input elements are reordered using a given stride

Figure 6 visualizes the reordering of an array xs with 8 elements using a
stride of 4. Reordering the elements of an array following (19) ensures that when
all work-items access their elements, consecutive work-items access consecutive
memory elements at the same time. This access pattern corresponds to so-called
coalesced memory accesses, which are beneficial on GPUs as multiple memory
accesses of work-items can be fused to a single memory access. Here, x2 is re-
ordered to position y4, because 4 = (2 − 1) div 2 + 4 × ((2 − 1) mod 2). In the
generated OpenCL code, reordering will not be performed by copying the array,
but rather by reading the array elements in a different order.
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The following rewrite rule introduces reorderStride in reductions:

reduce (⊕)→ reduce (⊕) ◦ reorderStride n (20)

We only apply reorderStride if the reordered array is reduced afterwards. There-
fore, we only change the order in which the elements are combined using ⊕; this
requires that ⊕ is associative and commutative.

4.3 Using Low-Level Patterns to Implement High-Level Reduction

Using the rewrite rules for thread and memory hierarchies, we further derive the
parallel program for reduction systematically, by introducing OpenCL-specific
low-level patterns. We start with the transformed program (TP) obtained in
Section 3.3:

reduce (+) ◦ join ◦map (

reduce (+) ◦ (join ◦map (reduce (+)) ◦ split 2)logm ) ◦ split m

{(12)}

= reduce (+) ◦ join ◦mapWorkgroup (

reduce (+) ◦
(join ◦mapLocal (reduce (+)) ◦ split 2)logm ) ◦ split m

{(15) applied twice}

= reduce (+) ◦ join ◦mapWorkgroup (

toGlobal ◦ reduce (+) ◦
(join ◦mapLocal (reduce (+)) ◦ split 2)logm ◦ toLocal (LLP1)

) ◦ split m

The obtained low-level program LLP1 closely resembles the first optimized
OpenCL kernel for parallel reduction as informally described in [8]. In appendix C
we show two more low-level programs, LLP2 and LLP3, also similar to versions
from [8]. Like the program LLP1, these are derived from the same high-level
program HLP by varying the choice of rewrite rules applied.

4.4 Code Generation

Starting with a high-level program consisting of the high-level pattern reduce,
we systematically derived optimized low-level versions LLP1–LLP3 of the parallel
reduction. In this section, we briefly explain how to transform such low-level
programs into imperative OpenCL code using our code generator.

Listing 1 shows the OpenCL program OCL1 generated by our code gener-
ator [16] from the low-level program LLP1. The generator does not apply any
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float sumUp(float x, float y) { return x+y; }
kernel void OCL1(global float* g_idata, global float* g_odata,

unsigned int N, local float* sdata) {
local float* sdata1 = sdata;
local float* sdata2 = &sdata1[128];
local float* sdata3 = &sdata2[64];
for (int wg_id = get_group_id(0); wg_id < (N / (128));

wg_id += get_num_groups(0)) {
{

int l_id = get_local_id(0);
sdata1[l_id] = g_idata[(wg_id * 128) + l_id];

}
barrier(CLK_LOCAL_MEM_FENCE);
{

int size = 128;
local float* sin = sdata1;
local float* sout = ((7 & 1) != 0) ? sdata2 : sdata3;
for (int j = 0; j < 7; j += 1) {
int l_id = get_local_id(0);
if (l_id < size / 2) {

float acc = 0.0f;
for(int i = 0; i < 2; ++i) {

acc = sumUp(acc, sin[(l_id * 2) + i]); }
sout[l_id] = acc;

}
barrier(CLK_LOCAL_MEM_FENCE);
size = (size / 2);
sin = ( sout==sdata3 ) ? sdata3:sdata2;
sout = ( sout==sdata3 ) ? sdata2:sdata3;

}
}
{

int l_id = get_local_id(0);
if (l_id < 1)
g_odata[wg_id + l_id] = sdata2[l_id];

}
}

}
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Listing 1: OCL1: Generated OpenCL code for the low-level program LLP1

optimizations, but rather transforms low-level patterns into imperative OpenCL

code as indicated in Figure 4 for the low-level map patterns. Multidimensional
arrays have a flat representation in our imperative OpenCL code: therefore, no
code is emitted when visiting patterns that change the data layout, like split ,
join, or reorderStride; these patterns rather influence the generation of how data
is accessed by subsequent patterns.

5 Evaluation

In this section, we experimentally evaluate the OpenCL kernels generated from
the three low-level programs LLP1-LLP3 (the latter two shown in Appendix C)
which have been systematically derived from our initial high-level program reduce (+).
Interestingly, the low-level program LLP1 describes the computation as imple-
mented in the first version by Nvidia [8], the code for LLP2 is very similar to the
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Fig. 7: Performance comparison for generated code against hand-tuned OpenCL code

fourth implementation, and the code for LLP3 corresponds to the fully optimized,
seventh Nvidia’s version in the same paper.

We use an Nvidia GeForce GTX 480 GPU to conduct our experiments using
the OpenCL runtime from Nvidia’s CUDA-SDK 5.5 and driver version 310.44.
To measure kernel run times, we use the OpenCL profiling API and we exclude
data transfer times to focus on the quality of the generated OpenCL kernels.
Each experiment is repeated 100 times, we report the median run time.

Figure 7 shows the performance of our OpenCL kernels (OCL1, OCL2, OCL3)
obtained by means of formal transformations and automatic code generation as
compared to the hand-written and manually tuned kernels provided by Nvidia
in [8](reduce1, reduce4, reduce7). We also compare our programs to the kernels
from two libraries which implement manually optimized versions of the parallel
reduction for GPUs: cuBLAS [12] and Thrust [2].

In order to compare our performance to the peak performance of the GPU,
we report our results as achieved bandwidth in GB/s by dividing the input data
size in gigabytes by the elapsed run time in seconds. We observe in Figure 7
that in all cases the performance of our code is on par with the performance of
the corresponding manually-tuned codes from [8]. Our most optimized version
OCL3 generated from LLP3 slightly outperforms the reduce7 code from [8] and
the Thrust code, and we almost exactly match the performance of the cuBLAS

library, which is the currently best known parallel implementation of reduction.

6 Conclusion

In this paper we present a transformation-based approach to developing high-
performance GPU programs using patterns and rewrite rules. We introduce
novel, OpenCL-specific low-level patterns to map our computations to the thread
and memory hierarchy of the GPU hardware, explicitly describing implemen-
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tation choices. We formalized well-known optimizations in order to systemati-
cally transform high-level programs to provably-correct, optimized low-level pro-
grams, rather than apply ad-hoc optimizations following the informal optimiza-
tion guides from GPU vendors. We choose the OpenCL model because it allows
to target a wide range of parallel accelerators. However, our transformational
programming approach is not limited to OpenCL: we may also use other models
like CUDA or OpenMP.

While this paper focuses on formalizing low-level OpenCL-related patterns
and rewrite rules, the order in which to apply these rules remains an open re-
search question. Since multiple rewrite rules might be applicable at the same time
and some rules can be applied infinitely often, the space of possible low-level ex-
pressions needs to be efficiently searched. An automatic randomized search strat-
egy in [13] already leads to well performing programs. One possibility to prune
the search space is to package often occurring combinations of rules in so-called
macro-rules to encode specific optimizations like tiling. Analytical cost models
or heuristics based on machine learning can guide the optimization process.

Experiments show that our transformation-based approach achieves perfor-
mance which is competitive or even better than hand-tuned code written by
performance experts and used in the modern vendor libraries for accelerators.
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Appendix

A Additional Rewrite Rules

f = map id ◦ f = f ◦map id (21)

f = λ x. f x (22)

id = join ◦ split n (23)

reduce (⊕) ◦ join = reduce (⊕) ◦ join ◦map (reduce (⊕)) (24)

reduce (⊕) = reduce (⊕) ◦ join ◦map (reduce (⊕)) ◦ split m (25)

B Proof of a Rewrite Rule

Rewrite rules are proved using equational reasoning. As an example we prove the
correctness of rule (25). This rule introduces layers in the computation hierarchy of a
reduction: first a partial reduction is computed, followed by a reduction which combines
all temporary results.

Proof (Reduce-Promotion Variant). Let n be a number divisible by m.

(reduce (⊕) ◦ join ◦map (reduce (⊕)) ◦ split m) [x1, . . . , xn]

{ Def. split (4) }
= (reduce (⊕) ◦ join ◦map (reduce (⊕))) [[x1, . . . , xm], . . . , [xn−m, . . . , xn]]
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{ Def. map (1) }
= (reduce (⊕) ◦ join) [reduce (⊕) [x1, . . . , xm], . . . , reduce (⊕) [xn−m, . . . , xn]]

{ Def. reduce (2) }
= (reduce (⊕) ◦ join) [[x1 ⊕ · · · ⊕ xm], . . . , [xn−m ⊕ · · · ⊕ xn]]

{ Def. join (5) }
= reduce (⊕) [x1 ⊕ · · · ⊕ xm, . . . , xn−m ⊕ · · · ⊕ xn]

{ Def. reduce (2), associativity of ⊕ }
= [x1 ⊕ · · · ⊕ xm ⊕ · · · ⊕ xn−m ⊕ · · · ⊕ xn]

{ Def. reduce (2) }
= reduce (⊕) [x1, . . . , xn] ut

C Derived Low-Level Reduction Programs

reduce (+) ◦ join ◦ mapWorkgroup
(

join ◦ toGlobal (mapLocal (mapSeq id)) ◦ split 1 ◦(
λ xs . join ◦ mapLocal (reduce (+)) ◦ split 2 ◦

reorderStride ((size xs)/2) xs
)7 ◦

join ◦ toLocal (mapLocal (reduce (+))) ◦ split 2 ◦

reorderStride 128)
◦ split (2 × 128)

(LLP2)

reduce (+) ◦ join ◦ mapWorkgroup
(

join ◦ toGlobal (mapLocal (mapSeq id)) ◦ split 1 ◦

join ◦ mapWarp
(

join ◦ mapLane (reduce (+)) ◦ split 2 ◦ reorderStride 1 ◦

join ◦ mapLane (reduce (+)) ◦ split 2 ◦ reorderStride 2 ◦

join ◦ mapLane (reduce (+)) ◦ split 2 ◦ reorderStride 4 ◦

join ◦ mapLane (reduce (+)) ◦ split 2 ◦ reorderStride 8 ◦

join ◦ mapLane (reduce (+)) ◦ split 2 ◦ reorderStride 16 ◦

join ◦ mapLane (reduce (+)) ◦ split 2 ◦ reorderStride 32)
◦ split 64 ◦

join ◦ mapLocal (reduce (+)) ◦ split 2 ◦ reorderStride 64 ◦

join ◦ toLocal (mapLocal (reduce (+))) ◦

split (blockSize/128) ◦ reorderStride 128)
◦ split blockSize

(LLP3)

Fig. 8: Two more low-level programs implementing parallel reduction. They are equivalent to the
fourth and the (seventh) most optimized version described in [8], correspondingly


