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Abstract

The Fast Fourier Transform is a well-known algorithm used
in many high-performance applications, ranging from signal
processing to convolutional neural networks.
In this paper, we encode FFTs by building high-level ab-

stractions based on a set of functional parallel patterns in
the Lift language. Abstractions are derived from and closely
resemble mathematical definitions for FFTs. We leverage the
Lift performance-portable code generator to generate high
performing GPU code for FFTs. No FFT-specific patterns
are required for this, showing the expressive power of the
generic parallel patterns used in Lift.

Our experimental results show that our approach achieves
performance better than AMD’s OpenCL implementation
clFFT on an Nvidia GPU. Nvidia’s highly optimized cuFFT
implementation still performs better on their GPUs.

CCS Concepts • Software and its engineering → Par-

allel programming languages; Compilers.
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1 Introduction

The Fast Fourier Transform is a well-known algorithm used
in many high-performance applications, ranging from signal
and image processing to more recent usage in convolutional
neural networks [21].
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Traditionally FFTswere implemented in high-performance
libraries such as FFTW [8]. As there are many possible im-
plementations of FFTs, each with their own trade-offs and
performance characteristics, it is challenging to provide an
optimal implementation for each input size and target device.
Modern libraries for GPUs, such as cuFFT [12], are very so-
phisticated and contain different variations carefully tuned
for the target GPU architectures.
Spiral [7, 13] is a successful example of a code gener-

ator taking advantage of domain knowledge to generate
high-performance code from domain-specific patterns. Spi-
ral originally generated efficient FFT implementations for
multiple CPU architectures [13], while recent efforts expand
it towards GPUs and FPGAs [7]. Spiral achieves high per-
formance with an FFT-specific program representation and
domain-specific transformation rules that allow the imple-
mentation space to be explored systematically.
In this paper, we investigate the generation of fast im-

plementations of FFT on GPUs starting from a functional
high-level pattern-based program representation. Our goal
is to explore the expressiveness of well-known functional
patterns of parallel computing, like map and reduce. Further-
more, we explore the capabilities of the pattern-based code
generator Lift [17] for achieving high performance of FFTs.
Programs expressed as compositions of parallel patterns

are transformed into a GPU-specific representation of low-
level patterns from which high-performance OpenCL code
is generated by the Lift code generator. The transformation
process is driven by a set of semantic-preserving rewrite
rules expressing implementation and optimization choices.
We extend the area of Lift applications which has already
been shown to achieve high performance [19] in multiple
domains including dense and sparse linear algebra, as well
as stencil computations.

The general-purpose philosophy of Lift allows the com-
position of algorithms from different domains in larger appli-
cations that are compiled and optimized together. Encoding
FFTs in general-purpose high-level patterns enables new op-
timization choices in the Lift code generator. It provides
the possibility to automatically decide to use FFT in bigger
applications based on domain-specific rewrite rules. Parts of
an application for which there exist semantically equivalent
encodings based on FFT can be substituted. For example,
it is possible to use stencils, as well as FFT, to implement
convolutional layers in convolutional neural networks [21].
The implementation choice between stencils, which have
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Figure 1. Overview of the Lift parallel language and code
generator.

been encoded in Lift previously [10], and FFT, can easily be
expressed as a rewrite rule. Overly specialized code genera-
tors such as Spiral do not have this ability.

Our paper makes the following contributions:
• We encode FFTs in the functional language Lift by
building high-level pattern-based abstractions that are
closely related to the mathematical notations of FFTs
(Section 3).

• We describe how efficient code is generated from these
high-level abstractions using Lift’s semantic preserv-
ing rewrite rules (Section 4).

• We experimentally evaluate our approach showing
that we achieve performance close to or even better
than the optimized OpenCL implementation clFFT by
AMD (Section 5).

2 Background

2.1 Lift: Generating Efficient GPU Code with

Patterns and Rewrite Rules

The Lift system [19] comprises a functional high-level data-
parallel language and code generator that aim at provid-
ing performance portability for high-performance programs.
The Lift language is based on high-level patterns which
express what to compute rather than how to compute it. As
depicted in Figure 1, high-performance programs for differ-
ent target architectures are generated from expressions in
the Lift language by a performance-portable code generator.
For GPUs, Lift programs are compiled into OpenCL kernels.

1 def dotproduct = λ((v, w) =>
2 reduce(+, 0) <<: map(*) <<: zip(v, w))
3
4 def matVecMult = λ((M, v) =>
5 map(λ(rowM => dotproduct(rowM , v))) <<: M)

Listing 1. "High-level Lift implementation of a matrix-
vector multiplication."

Listing 1 shows an example of a high-level Lift expres-
sion for matrix-vector multiplication of matrix M and vec-
tor v. It is implemented using the Lift functions matVecMult

and dotproduct. Lift functions are created using lambda-
expressions, with parameters on the left-hand side of the
arrow => and the function body on the right-hand side. In
the function body, an expression is created by applying pre-
defined high-level patterns or lambda-expressions to values.
For readability, we use the operator <<:, which is synonym to
function application, e.g., map(*) <<: zip(v, w) ≡ map(*, zip(

v, w)). In the example, the parameter M – a two-dimensional
array representing a matrix – is passed to amap which is
instantiated with another Lift function. The use of the map
pattern encodes that for every row of the matrix the dotprod-
uct with the vector v is computed. The function dotproduct

encodes multiplying two arrays element-wise first and then
summing the results up with reduce .
During code generation in Lift, a high-level program is

rewritten into a low-level representation consisting of low-
level, hardware-specific patterns. Low-level patterns encode
how computations and data are mapped to a target device,
e.g., a GPU. Lift’s rewrite system ensures that the low-level
program has the same semantics as the high-level program.
In its low-level form, the program is enriched with the in-
formation about how the computation is mapped onto the
thread and memory hierarchies of the target device. When
the target architecture is a GPU, the low-level patterns are
closely related to the OpenCL programming model, such that
OpenCL code can be generated quite straightforwardly. This
approach was shown to generate high-performance code for
various domains, including sparse linear algebra, General
Matrix Multiplication (GEMM), and stencil computations.
In this paper, we express FFTs using the following data-

parallel patterns defined in Lift. One of the findings of this
paper is that it is not necessary to add further patterns in
order to express the variety of FFT versions. This emphasizes
the expressiveness of patterns that are well-known in the
functional and algorithmic skeleton communities.

mapmapmap : (α → β) → [α]n → [β]n

reducereducereduce : α → (α → β → α) → [β]n → α

zipzipzip : [α]n → [β]n → [(α × β)]n

splitsplitsplit : (m : Int) → [α]n → [[α]m]n/m

joinjoinjoin : [[α]m]n → [α]m ·n

transposetransposetranspose : [[α]m]n → [[α]n]m

arrayarrayarray : (n : Int) → (Int → Int → α) → [α]n

Each high-level pattern is given with its type. Array types
are written as [α]n , where α is the type of the elements, and
the size n of the array is tracked in the type. For tuple types,
we write (α × β) with component types α and β . Finally,
α → β is the function type expecting a value of type α and
returning a value of type β .
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In the following, we briefly describe the semantics of all
patterns: map applies a given function to each element of
an array, creating a new array of the same size containing
the results. reduce combines all the elements in an array by
traversing it and applying a binary reduction operator; the
result is stored in an accumulator variable initialized by the
first argument. zip combines two input arrays of the same
size into a single array of tuples (α × β). split partitions the
input array of size n into chunks ofm elements, resulting
in a two-dimensional array. join is the inverse operation
of the split pattern. transpose swaps the dimensions of a
two-dimensional array and reorders the array elements ac-
cordingly. The array generator pattern produces an array by
invoking a function for each element passing the element’s
position and the size of the array to it. For higher dimensions,
array is defined analogously. Additionally, Lift allows the
definition of user functions written in C and embedded in
the generated OpenCL code. They are used to implement op-
erators, e.g., multiplication of float values. User functions
only accept and return values that are not of array type.

A key contribution of this paper is to show how to express
FFTs in this generic framework and eventually achieve high
performance. We accomplish this by taking advantage of
Lift’s rewrite rules to map a high-level pattern-based repre-
sentation to a low-level representation, from which efficient
GPU code is generated automatically.

2.2 Fast Fourier Transform

Fast Fourier Transforms (FFTs) are fast implementations of
the Discrete Fourier Transform (DFT). The DFT is computed
as a matrix-vector product Dn ·v of a complex-valued matrix
Dn of size n × n and vector v of size n, where the values dj,k
of Dn are defined by the following formula:

dj,k = ω j ·k
n for 0 ≤ j,k < n and ω j ·k

n = e(−2πi/n)·jk

Here, e is Euler’s number and i the imaginary number. In
other words, “computing the DFT of size n over vector v” is a
synonym for the matrix-vector product of Dn and v .
The general idea of FFT is to decompose the matrix Dn

into a product of multiple matrices Ap . These matrices are
sparse with a regular pattern of non-zero values, thus allow-
ing for efficient multiplication implementations. All Ar are
iteratively multiplied with the input vector, such that

Dn · v = At · (· · · (A1 · v) ) (1)

Implementations of the matrix-vector multiplications

Ap · vp−1 where vp−1 = Ap−1 · vp−2 and v0 = v

exploit the sparsity of Ap to reduce the time complexity to
O(n logn) compared to the complexity of O(n2) required
for the multiplication of Dn and v . In the following, we will
call a single matrix-vector multiplication of Ap · vp−1 a pass
over the vector vp−1. Different variations of FFT decompose
Dn into different passes Ap .

Figure 2 shows the passes of the two most popular FFT
variations – Cooley-Tukey and Stockham. Both variations
perform passes that permute the vector or combine smaller
DFT results together. A pass which combines smaller DFT
results either with or without permuting the vector is called
a combine pass. The Cooley-Tukey FFT begins with the bit-
reversal pass that permutes the vector, such that there are
no further permutations necessary in later passes. For this,
A1 is a permutation matrix. The bit-reversal pass is followed
by passes Ap · vp−1 for 2 < p ≤ t that combine previous
results into new intermediary results until the complete DFT
is computed. In contrast to this, the Stockham FFT consists
of combine passes only. It permutes the vector, followed by
computing the intermediary results, in every single pass.
The result of a combine pass is a vector consisting of

several subvectors that hold the result of computing the DFT
of size Lq over specific elements of the input vectorv , e.g.,D2 ·

v(0, 4) in Figure 2. We call such a result an intermediary DFT
result. For the intermediary DFT results, a DFT of size rq over
elements of the previous pass is computed and multiplied
with values, that are called twiddle factors (shown in Figure 2
by the lines without arrowheads). rq is called the radix of
combine pass q, with 1 ≤ q < u. All radices factorize the
size n of the input vector v , i.e., n = ru · · · r2 · r1. Hence, u is
the number of combine passes in an FFT version. The size
Lq of the intermediary DFT results depends on the radix rq
of the current pass and the radices of previous passes, i.e.,
Lq = rq · · · r2 ·r1. In the example FFTs in Figure 2, every radix
equals 2 and, therefore, u = 3 and n = 2 · 2 · 2 = 8.

Figure 3 shows how FFT variations are expressed as differ-
ent matrix-vector products. The notation uses the Kronecker
product operator. The Kronecker product of a p × s matrix A
and am × n matrix B, is a matrix of size pm × sn:

A ⊗ B =
©­­«
a0,0 · B . . . a0,s−1 · B
...

...
ap−1,0 · B . . . ap−1,s−1 · B

ª®®¬
We call a matrix that is contained in another matrix a block
matrix, e.g., the aj,kB form block matrices. We note that there
appear only three different kinds of matrices in Stockham (2)
and Cooley-Tukey (3), namely Πrq,Lq , Brq,Lq and Irq,Lq . Mul-
tiplying the butterfly matrices Brq,Lq with a vector multiplies
twiddle factors and computes DFTs of size rq . The butterfly
matrices are defined as follows:

Brq,Lq = (Drq ⊗ ILq/rq )

· diaд(ILq/rq ,Ωrq,Lq/rq , . . . ,Ω
rq−1
rq,Lq/rq

) (4)

Matrix Ωrq,Lq/rq , is a diagonal matrix of twiddle factors. The
other matrices, In/Lq and Πrq,Lq , are identity matrices of size
n/Lq and permutation matrices, respectively. To form passes,
these matrices are combined in terms of matrix-matrix mul-
tiplication, the Kronecker product (⊗) and matrix transposi-
tion. Operation ∗ denotes element-wise multiplication.
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Figure 2. Example of the dataflow in the Cooley-Tukey and Stockham FFTs over an input array of size 8 (inspired by [11]).

Stockham: Dnv =

Stockham pass︷                                  ︸︸                                  ︷
(Bru ,Lu ⊗ I n

Lu
)︸           ︷︷           ︸

combine

· (ΠT
ru ,Lu ⊗ I n

Lu
)︸            ︷︷            ︸

permute

· · ·

Stockham pass︷                               ︸︸                               ︷
(Br1,L1 ⊗ I n

L1
)︸          ︷︷          ︸

combine

· (ΠT
r1,L1 ⊗ I n

L1
)︸          ︷︷          ︸

permute

·v (2)

Cooley-Tukey: Dnv =

Cooley-Tukey pass︷           ︸︸           ︷
(I n

Lu
⊗ Bru ,Lu )︸           ︷︷           ︸

combine

· · ·

Cooley-Tukey pass︷          ︸︸          ︷
(I n

L1
⊗ Br1,L1 )︸          ︷︷          ︸

combine

·

bit-reversal pass︷                                        ︸︸                                        ︷
((I n

Lu
⊗ Πru ,Lu )︸             ︷︷             ︸

permute

· · · (I n
L1

⊗ Πr1,L1 ))
T︸             ︷︷             ︸

permute

·v (3)

Figure 3. FFT variations in matrix-vector notation from [20].

In this section, we have shown that the DFT of a vector is
performed by computing a matrix-vector product. The gen-
eral idea for FFTs is that they split this matrix-vector product
into multiple passes consisting of computing matrix-vector
products with sparsematrices. These passes are implemented
efficiently, so that FFTs are faster than DFTs. There are many
variations of FFTs including the Cooley-Tukey and Stock-
ham FFT, which are expressed in matrix-vector notation
using operators such as matrix-vector multiplication and the
Kronecker product. Next, we are going to use the parallel
patterns of Lift to encode FFTs with the goal of generating
efficient GPU code.

3 Encoding FFTs with High-Level Lift

Patterns

In this section, we encode FFTs in Lift. We aim for building
abstractions with Lift that are as close as possible to the
mathematical notation introduced in Section 2. We show
how to encode FFTs at the example of Stockham FFT. The
ideas used for encoding the Stockham FFT are then reused
to implement the Cooley-Tukey FFT.

A Stockham FFT pass is decomposed into multiple smaller
matrix-vector multiplications. To echo this structure in Lift,
we define Stockham pass as a function that is composed
out of multiple function calls each representing a smaller

matrix-vector multiplication. A key idea is that we encode
domain-specific knowledge about the structure of the matrix
operands which eventually will allow us to generate efficient
implementations.

As described earlier, the amount of passes depends on the
choice of radices. Larger radices lead to less passes. For a
compiled program, this choice also has an impact on whether
the hardware is able to coalesce memory accesses and how
much work is performed in a single thread. With growing
radices the matrix and vector in the smaller matrix-vector
multiplications becomes larger increasing the amount of
arithmetic operations.
The hierarchical FFT is another FFT variant that treats

the input as a matrix and has a fixed number of passes. It
recursively computes FFTs instead of smaller matrix-vector
multiplications and elements are guaranteed to be read in
a coalesced manner. As a drawback of this variant, matrix
transpositions over the entire input have to be computed
resulting in more work that is performed in a single pass.
This can slow down execution especially for larger inputs.
We give a brief overview on how we encoded this variant in
Lift as well. Throughout this section, we will point out the
close correspondence between the mathematical formulas
of Section 2 and the Lift programs presented in this section.
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3.1 Encoding Stockham FFT in Lift

As seen in Section 2.2, Stockham FFT consists of a series of
passes which are matrix-vector multiplications. We encode
this series of passes by creating Lift functions for individual
passes. These functions are composed to encode a Stockham
FFT, as follows:

1 def fftStockham(rs, v) = {
2 def n = r1 * r2 * . . . * ru ;
3 stockPass(ru , n, n)
4 <<: . . . <<: stockPass(r1, r1, n) <<: v
5 }

Function fftStockham takes as arguments an input vector v

represented as an array and an array rs = [r1, r2, . . ., ru]

of radices. It composes Lift functions that are created by
calling stockPass with different arguments. For pass q, it calls
stockPass with the radix rq and computes Lq by multiply-
ing radices. In matrix-vector notation, a Stockham pass is
encoded as two consecutive matrix-vector multiplications:

stockPass v = (Br,L ⊗ I n
L
)︸       ︷︷       ︸

combine

· (ΠT
r,L ⊗ I n

L
)︸        ︷︷        ︸

permute

·v

1 def stockPass(r, L, n) = λ(v =>
2 stCombine(r, L, n)) <<: stPerm(r, L, n) <<: v

For a specific pass, parameters r , L and n are fixed while
v is an arbitrary vector of size n. We encode this in function
stockPass which creates a Lift function that expects a single
argument v . The created Lift function composes two other
Lift functions that encode the matrix-vector multiplications
with permute and combine matrices. In matrix-vector nota-
tion, the permute matrix is created by the Kronecker product
with an identity matrix as the right operand and a transposed
permutation matrix as the left operand:

permute v = (ΠT
r,L ⊗ I n

L
) · v

1 def stPerm(r, L, n) = λ(v =>
2 kronIdR(n/L, multPiT(r)) <<: v)

The function kronIdR encodes a general matrix-vector mul-
tiplication with a matrix created by the Kronecker product
operator, where the right operand is an identity matrix. Func-
tion multPiT encodes the matrix-vector multiplication of a
transposed permutation matrix ΠT

r,L .
Similarly, in matrix-vector notation, the combine matrix is

created by the Kronecker product operator with an identity
matrix as the right operand and a butterfly matrix as the left
operand:

combine v = (Br,L ⊗ I n
L
) · v

1 def stCombine(r, L, n) = λ(v =>
2 kronIdR(n/L, multB(r, L)) <<: v)

3.1.1 The Kronecker Product (⊗)

A general implementation of the Kronecker product would
require multiplying every element of the left operand to ev-
ery element of the right operand. We avoid performing these
multiplications by creating specialized functions that encode
knowledge about the structure of the matrix operands.
In the matrix-vector notation of Stockham FFT – in the

combine and the permute matrices – the right operand of the
Kronecker product is an identity matrix. Using this knowl-
edge we create a function which computes the Kronecker
product with an identity matrix as the right operand.

1 def kronIdR(m, matMult)= λ(v =>
2 join <<: transpose <<: map(matMult)
3 <<: transpose <<: split(m) <<: v)

Function kronIdR is based on predefined high-level Lift
patterns. Figure 4 shows an example of a matrix-vector mul-
tiplication, where the matrix is created by the Kronecker
product operator with an identity matrix on the right. It
shows that multiplying a matrix A ⊗ Im with a vector is sim-
ilar to multiplying the matrix A with smaller vectors. These
vectors hold elements from v that are a fix size apart from
each other. The distance between elements depends on the
size of the identity matrix. In Lift, this is encoded by creating
arrays of elements that form smaller vectors and applying
map with a function that encodes the multiplication of A,
over them.

3.1.2 Multiplying a Transposed Permutation Matrix

We encode multiplying a transposed permutation matrix as
follows:

multPiT v = ΠT
r,L · v

1 def multPiT(r) = λ(v =>
2 join <<: transpose <<: split(r) <<: v)

By definition, multiplying a transposed permutation matrix
with a vectorv permutes the elements in the vector such that
elements in v that are r − 1 elements apart from each other,
appear next to each other in the permuted vector. Function
multPiT splits an array into chunks of size r and transposes
the resulting two-dimensional array. This groups elements
that are r − 1 elements apart from each other. After join-
ing the two-dimensional into a one-dimensional array, the
indices of the one-dimensional array’s elements are sorted
like the vector that results from multiplying a transposed
permutation matrix.

3.1.3 Multiplying a Butterfly Matrix

In order to encode the matrix-vector multiplication of a but-
terflymatrix Br,L , we need to represent thematrix as an array
in Lift. Br,L is sparse, i.e., has many zero entries. Our goal
is to avoid multiplying by zero. We achieve this by deriving
an array representation of butterfly matrices that contains

5
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Figure 4. Matrix-vector multiplication of a Kronecker product with an identity matrix on the right.

non-zero elements only and by multiplying only elements
from this representation with vector elements.

1 def multB(r, L) = λ(v =>
2 join <<: transpose <<: map(complexMatVecMult)
3 <<: zip(transpose <<: split(L/r) <<: v,
4 RepOfB(r, L))

Figure 5 shows an example of a matrix-vector multiplication
with a butterfly matrix. It shows that multiplying Br,L with
a vector is similar to multiplying smaller matrices B(j)

r,L with
smaller vectors. The smaller matrices are made up out of
elements in Br,L and do not contain any zero entries. The
smaller vectors are made up out of elements in v . We repre-
sent butterfly matrices as three-dimensional arrays where
the inner two-dimensional arrays represent thematrices B(j)

r,L .
This way, the representation of the butterfly matrix does not
contain any zero-entries. Similarly to a matrix-vector mul-
tiplication where the matrix is a Kronecker product with
an identity matrix on the right, we group the values of the
smaller vectors into arrays. The matrices B(j)

r,L together with
the vector that they are multiplied with, are passed to Lift
function complexMatVecMult which encodes complex matrix-
vector multiplication.

The array representation of butterfly matrices is encoded
in RepOfB using Lift’s three-dimensional array patternarray3:

1 def RepOfB(r, L) = array3(r, r, L/r, genRepB)
2
3 def genRepB(j, k, l, numMats , height , width) =
4 omega ((k * numMats + j) * l, height * numMats

)
5
6 def omega(k, n) =
7 { cos(-2 * π * k / n), sin(-2 * π * k / n) }

Pattern array3 expects the sizes of the array in three dimen-
sions and a user function. User function genRepB computes a
specific array element depending on the element’s indices in
the representation of the butterfly matrix, by calling omega.
Function omega returns a complex number. Complex numbers

are represented as tuples of a real and imaginary element. In
omega, functions cos and sin are called. These are realized by
the corresponding OpenCL function calls. Depending on the
GPU, the computation of trigonometric functions can be very
slow. We address this with an optimization in Section 3.3.

3.2 Encoding Cooley-Tukey FFT in Lift

The major difference between encoding the Stockham and
the Cooley-Tukey FFT is that the latter begins with a bit-
reversal pass. Because of the similarities between the FFT
versions, we show only how to encode the bit-reversal pass.
In matrix-vector notation, the bit-reversal pass is a product
of permutation matrices that is transposed:

bitRev v = ((I n
Lu

⊗ Πru ,Lu )︸             ︷︷             ︸
permute

· · · (I n
L1

⊗ Πr1,L1 ))
T︸             ︷︷             ︸

permute

·v

1 def bitRev(rs) = λ(v =>
2 ctPerm(r1, ru * . . . * r1)
3 <<: . . .

4 <<: ctPerm(ru−1, ru * ru−1)
5 <<: ctPerm(ru , ru ) <<: v)

To encode that a transposed bit-reversal matrix is multiplied,
the order in which the radices rs are used is reverted [20].
Function ctPerm implements the Kronecker products In/Lq ⊗

Πrq,Lq with an identity matrix as the left operand. For this,
the implementation makes use of function kronIleft, that is
derived analogously to kronIright. Function kronIleft expects
as a parameter an implementation of themultiplication of the
matrices Πrq,Lq with a vector. We make use of the equality
Πr,L = ΠT

L/r,L and use multPiT to encode:

ctPerm v = (In/L ⊗ Πr,L) · v

1 def ctPerm(r, L) = λ(v =>
2 kronIleft(n/L, multPiT(L/r)) <<: v)

6
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Figure 5. Multiplying a butterfly matrix with a vector.

3.3 Optimizing Butterfly Multiplication with

Twiddle Factors

For the butterfly matrix multiplication in Section 3.1.3, we
ignored that in matrix-vector notation, the butterfly matrix
is made up out of a Kronecker product multiplied with a
diagonal matrix holding twiddle factors:

multDFTTwiddle v =

(Dr ⊗ ILq/rq ) · diaд(ILq/rq ,Ωrq,Lq/rq , . . . ,Ω
rq−1
rq,Lq/rq

)︸                                           ︷︷                                           ︸
twiddle factors

·v

1 def multDFTTwiddle(r, L) = λ(vs =>
2 join <<: transpose
3 <<: map(multDFT(r) o elemWiseMult)
4 <<: zip(transpose <<: split(L/r) <<: v,
5 RepOfTwiddle)
6
7 def RepOfTwiddle(r,L) =
8 array_2(L/r, r, genTwiddle)

Function multDFTTwiddle encodes multiplying a butterfly ma-
trix and therefore looks very similar to multB. The major
difference is that multDFTTwiddle encodes two separate oper-
ations. First, arrays holding twiddle factors and arrays of
grouped vector elements are multiplied element-wise. Then,
a matrix-vector multiplication is applied to the results. We
represent the matrix of twiddle factors by creating a two-
dimensional array RepOfTwiddle in which every inner one-
dimensional array represents a different Ωj

r,L/r . The user
function genTwiddle computes an element depending on its
indices in the two-dimensional array. Function multDFT(r) en-
codes the matrix-vector multiplication Dr · v by passing an
array representing Dr and an array representing a vector to
function complexMatVecMult, encoding complex matrix-vector
multiplication.
Often, this decomposition is used in practice, because

multDFT(r)<<:v can be optimized by hand. However, gener-
ating a straightforward implementation leads to additional
arithmetic operations, because twiddle factors have to be
multiplied on top of the matrix-vector multiplication. A user

function expressing a hand-optimized multiplication of a
small Dr with a vector, has to return a value of array type
which is currently not possible in the Lift system. We are
able to make use of this decomposition with another com-
mon optimization in which a table of twiddle factors is pre-
computed, thereby we avoid to call library functions that
compute sine and cosine, which can be very expensive de-
pending on the hardware support. This optimization is used
by FFTW and the clFFT OpenCL library, for example. By
expressing the above decomposition of the butterfly matrix
multiplication, we enable the precomputation of the elements
in RepOfTwiddle during code generation.

3.4 Encoding Hierarchical FFT

We now investigate how to reuse the previously introduced
abstractions to express the hierarchical FFT variant [2].
For the non-hierarchical FFTs and for larger choices of

radices, the matrix-vector multiplication becomes inefficient
in terms of arithmetic operations as well as the amount of
registers used. Additionally, the global memory access pat-
terns depend on the chosen radices, influencing the number
of coalseced memory accesses. An alternative to performing
a matrix-vector multiplication to compute a DFT for large
radices is to recursively compute an FFT based on smaller
radices that are better suited for matrix-vector multiplication.
For these hierarchical FFTs there is a trade-off with guaran-
teed coalesced memory accesses and less passes but with
additional copies and the necessity for matrix transpositions.

Figure 6 depicts an example of the hierarchical FFT variant:
1. Group the input vector into chunks of size n1, trans-

pose the resulting matrix and write the result into
memory. This forms a n1 ×n2 matrix which has a row-
major layout in memory.

2. Map a function encoding a FFT variant over every row
of the matrix. Again write the results are into memory.

3. Multiply amatrix consisting of twiddle factors element-
wise with the result from step 2. Transpose the result-
ing matrix to form a n2 × n1 matrix and write it into
memory again.

7
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1. 2.

3. 4.

5.

FFT over
Rows

FFT over
Columns

Group

Twiddled Transpose

Ungroup

Figure 6. Steps of the hierarchical FFT

4. Repeat step 2 on the transposed matrix.
5. Transpose the matrix a last time, write into memory

and ungroup the rows to create the FFT result vector.
These five steps are executed in sequential order. Therefore,
we encode every step in a separate Lift function in order
to later generate a different OpenCL kernel for every step.
Steps that transpose the matrix are implemented with tiling
an optimization described in [16].

In this section, we have shown how to build and compose
abstractions that closely resemble the mathematical notation
for FFTs, in Lift. A Lift function that encodes a complete
FFT pass is composed of smaller Lift functions or parallel
patterns. In the next section, we show how OpenCL code is
generated from this function.

4 Generating Optimized OpenCL code

In this section, we explain how OpenCL code is generated
from the high-level programs introduced in Section 3. Cru-
cially, we describe how the abstractions built to closely reflect
the mathematical notation of FFTs are compiled away.

Generating StockhamOpenCLCode In Lift, a Stockham
pass is represented as a composition of functions. The Lift
compiler inlines all of these functions and works directly on
the underlying pattern-based representation. Functions in
Lift facilitate abstractions without introducing a cost for
the generated code. After inlining all functions, a Stockham
FFT pass is represented in Lift as shown in Listing 2.
Not all patterns in Lift produce OpenCL code directly.

Some patterns, such as join or split only influence how suc-
cessive patterns read their input from memory. Therefore,
these data layout patterns [19] only influence index compu-
tations in the generated OpenCL code. Code is only directly
generated for the map and reduce patterns. For pattern map,
OpenCL code is only generated when for the nested func-
tion code is generated as well. No code is generated when
the function nested in map only consists of data layout pat-
terns, like it is the case for the map in line 12. To generate

1 def stockPass(r, L, n) = λ(v =>
2 join <<: transpose <<: map(λ(v =>
3 join <<: transpose <<: map(λ((v, RepOfB j ) =>
4 map(λ(rowB j =>
5 reduce (+,{0,0}) o map(*) o zip(rowB j ,v))

)
6 <<: RepOfB j ))
7 <<:zip(transpose <<:split(L/r,v),
8 array3(r,r,L/r, genRepB))))
9 <<: transpose <<: split(n/r)
10 <<: join <<: transpose
11 <<: map(join o transpose o split(r))
12 <<: transpose <<: split(n/L) <<: v )

Listing 2. Inlined high-level Stockham FFT pass in Lift.

code, an expression is rewritten into a low-level form, where
the map patterns have been rewritten into OpenCL specific
variations such as mapGlobal, that directly correspond to a
specific for-loop in OpenCL, distributing the work across
global work-items1.
Naively rewriting the above code into a low-level form

would result in an OpenCL kernel containing four nested
loops that correspond to the four map patterns in lines 2–6
which describe the computation of multiple matrix-vector
multiplications of complex values. The matrix-vector multi-
plication is shown in line 6. It is encoded using the zip, map(*),
and reduce(+,{0,0}) patterns.

To avoid the four-level deep nesting, we apply the follow-
ing rewrite rule that rewrites two nested map patterns into
an expression with a single map:
1 map(λ(x =>

2 g <<: map(f) <<: zip(x, y)) <<: xs

3 7−→7−→

4 λ(x => map(g) <<: split(n) <<: map(f)

5 <<: zip(x, pad(0,(m-1)*n,wrap ,y)) )

6 <<: join <<: xs

This rule is usable when a function is applied to a each ele-
ment of a two-dimensional array, where each row has been
zipped with a fix array. It captures the intuition that instead,
the function can be applied to a flattened two-dimensional
array that is zipped with an array in which the elements of
the fix array are repeated. On the left-hand side of the rule, a
zip is nested in the outer map. Zip’s argument y is repeated
for each row of the outer array. In the rewritten expression,
the repetition is achieved using pad (introduced in [10]) and
wrap that enlarges arrays by repeating its values.
The reduction and map patterns used in the matrix-vector
multiplication can be fused to generate only a single loop
using the following rule (from [17]):
1 reduce(f,id) <<: map(g) <<: xs

2 7−→7−→

3 reduceSeq(λ((acc ,x) =>

4 f(acc , g(x))),id) <<: xs

1Work-item is OpenCL’s terminology for a thread.
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1 def stockPass(r, L, n) = λ(v =>
2 join <<: transpose
3 <<: λ(v => map(join o transpose) <<: split(n)
4 <<: mapGlobal(λ((v, RepOfB j ) =>
5 mapSeq(λ(rowB j =>
6 reduceSeq(multAndSum ,{0 ,0})
7 o zip(rowB j ,y)), RepOfB j )
8 )) <<:zip( transpose <<:split(L/r) <<: v,
9 pad(0,(m-1)*n,wrap ,
10 array3(r,r,L/r, genRepB)) )
11 ) <<: join <<: transpose <<: split(n/r)
12 <<: join <<: transpose
13 <<: map(join o transpose o split(r))
14 <<: transpose <<: split(n/L) <<: v )

Listing 3. Rewritten Stockham FFT pass using low-level
patterns

It is interesting to note that the resulting reduction operator
is not associative and, therefore, the reduction has to be
performed sequentially.

Together with Lift’s lowering rewrite rules (as described
in [17]) which rewrite map patterns into OpenCL-specific
counterparts, we obtain the rewritten Lift expression in
Listing 3.

The expression now consists only of data layout patterns
and the patterns mapGlobal, mapSeq, and reduceSeq which
directly correspond to OpenCL code snippets. Generating
code is, therefore, straightforward with the exception of
handling the data layout patterns. For these, a compiler-
internal data structure called views is created that is used
to compute the array indices. Detail of the code generation
process are described in [19]. Listing 4 shows the OpenCL
code generated from the Lift program shown above.
In Listing 4, the OpenCL kernel consists of three nested

for-loops in lines 4–8 that correspond to the mapGlobal,
mapSeq (both line 5) and reduceSeq (line 7) in the rewritten
Lift program. The indices in the OpenCL kernel have been
influenced by the many data layout patterns visible in the
Lift program. To generate reasonably concise indices, Lift
performs a number of arithmetic simplifications. In [19], it is
shown that these simplifications are often crucial to achieve
high performance. In the context of FFT, Lift’s capability
to compile complex sequences of data layout patterns into
concise and efficient indices is crucial to generate efficient
OpenCL kernels like the one shown in Listing 4.

Generating Hierarchical FFT OpenCL Code We apply
the same rewriting process to passes of the hierarchical FFT
and the non-hierarchical FFT functions within them with
different rewrite rules to make use of local memory. There
are two groups of steps that are similar: 1. Group, 3. Twid-
dled Transpose, 5. Ungroup and 2. FFT over Rows, 4. FFT over
Columns. The computations in the steps in the first group

1 kernel void fftPass12Radix2(
2 const global complex *restrict v,
3 global complex *out) {
4 for (int id=get_global_id (0);id <8388608;
5 id += get_global_size (0)) {
6 for (int row = 0; row < 2; row += 1) {
7 complex acc = {0.0, 0.0};
8 for (int col = 0; col < 2; col += 1) {
9 acc = multAndSum(acc , {
10 v[((id / 2048) + (4096 * col)
11 + (8192 * (id % 2048)))],
12 genRepB_j ((id %2048) ,row ,col ,2048 ,2 ,2)});}
13 out[((id /2048) + (4096*( id % 2048))
14 + (8388608* row))] = acc

;}}}

Listing 4. OpenCL code for a Stockham pass with radix
r = 2, L = 2048 and n = 16777216

1 def fftOver(n, nestedFFT) = λ(v =>
2 join <<: mapWorkgroup(
3 toGlobal(mapLocal(id)) o nestedFFT o
4 toLocal(mapLocal(id)) )
5 <<: split(n) <<: v)

Listing 5. Rewritten low-level Lift expression for steps
2. FFT over Rows and 4. FFT over Columns.

are similar as these are implemented using a matrix transpo-
sition optimized with tiling in local memory. The transposi-
tion in the first step ensures that coalesced memory accesses
are possible in the following step, the same is true for the
third step. The Lift functions for step 2 and 4 are similar as
they both encode applying the nested FFT. The functions are
rewritten into a lower level form explicitly encoding that the
nested FFTs are computed by work-groups. Listing 5 shows
the rewritten expression for these steps.
In line 5 the input vector is interpreted as a matrix by

splitting it into rows of size n. The pattern mapWorkgroup
in line 2 indicates that work-groups apply a function to the
rows of said matrix. The toLocal and toGlobal patterns repre-
sent writing the result of the evaluation of an expression into
local or global memory respectively. Therefore, the function
in mapWorkgroup first copies elements of the matrix row
into OpenCL local memory by mapping the id function to
every element using mapLocal wrapped into toLocal. Then,
it computes the FFT using the work-items of the work-group
and writes the result back from local memory into global
memory. We note that the local memory is much more lim-
ited in size than global memory and for large input vectors it
can be impossible to find matrix dimensions n1×n2 such that
both dimensions fit into local memory completely. In this
case, we choose one dimension o be small enough to fit into
local memory and recursively apply the hierarchical FFT to
the dimension that is too large. Hence, the input vector is not
treated as a matrix but as a cube with dimensions n1×n2×n3.

9
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5 Experimental Evaluation

In this section, we experimentally evaluate the performance
of the GPU code generated for FFTs using our Lift approach.
We are interested in comparing the runtimes of large FFTs –
where the large numbers of GPU cores are fully exploited –
to professionally developed FFT libraries for GPUs.

Hardware Setup We use two different GPUs to conduct
our experiments. One is an Nvidia Kepler K20c GPU with
driver version 384.145. The GPU’s maximum clock frequency
is 705 MHz and it contains 13 SMXs (Streaming Multipro-
cessors) with overall 2496 streaming processors. There are
4.631 GiB of off-chip global memory available.The other
GPU is a Radeon RX Vega 64 GPU with driver version 2574.0
(HSA1.1,LC). The GPU’s maximum clock frequency is 1630
MHz and it contains 64 CUs (Compute Units) with overall
4096 stream processors. There are 7.892 GiB of off-chip
global memory available.

All experiments are conducted using Ubuntu 16.04.5 LTS
with the kernel version 4.15.0-30-generic x86_64. The used
OpenCL platforms are NVIDIA CUDA version 1.2 CUDA
9.0.424 for the Nvidia GPU and AMD Accelerated Processing
version 2.1 AMD-APP.internal (2574.0) for the AMD GPU.

Experimental Setup For every experiment, we use double
precision data types with a size of 8 bytes to represent the
real or imaginary parts of values. The input vector has a
size of 224 = 16777216 bytes and consists of randomly gen-
erated values. The number of arithmetic operations in the
algorithms does not depend on the values of the input vector.
Hence, there is no risk of large variation in the performance
results for different values. The Lift functions encoding FFT
passes are parameterized over a statically known radix and
a statically known size of intermediary DFTs computed by
the previous pass. We generate a specialized kernel for every
FFT pass and their parameters. The choice of parameters
depends on the input size which therefore has to be known
statically as well. This restriction means that Lift generated
FFT kernels can not handle arbitrary input sizes and that
new kernels must be generated for a new input size. How-
ever, in practice the size of the input vector is usually known
statically, and library generators such as Spiral or an OpenCL
kernel generator such as clFFT generate specialized code for
specific input sizes as well.
We use ATF [15] – a generic auto-tuning framework –

to tune the number of work-items and work-groups that
execute the kernel in order to find a better-performing con-
figuration. Every kernel is tuned for either one hour or until
the best runtime has not improved for the last 1000 tested
configurations. The found configurations are then used to
execute the kernels that compose an FFT in order to compute
the FFT over the input. The FFT computations are repeated
20 times and the runtimes are measured using the OpenCL
API and then averaged.

Choosing Radices As mentioned in Section 3 the choice
of radices has an important impact on the hardware’s abil-
ity to coalesce memory accesses and the amount of passes
needed to compute an FFT. The hierarchical FFT variant of-
fers the possibility to avoid these problems. Nonetheless, the
choice of radices impacts the performance of the hierarchical
FFT variant as well. The nested non-hierarchical FFT passes
access local memory where bank conflicts need to be kept
low. A poor choice of radices increases the amount of bank
conflicts. We generate code for different choices of radices
for non-hierarchical and hierarchical FFTs. The input size
chosen for the evaluation is a power of 2 and 4 and with this,
the non-hierarchical FFT passes are based on radices of 2 or 4.
These radices are considered optimal in terms of the number
of arithmetic operations [5]. Additionally, we evaluate the
performance for code generated for radix 8 that reduces the
amount of passes needed and increase the computational
load of threads. For the hierarchical FFT the input vector is
too large to fit entirely into local memory. Therefore, we ap-
ply the hierarchical FFT recursively as described in Section 4
by choosing to group the vector in step 1 of the hierarchical
FFT in groups of 256. Radices might consist of 2s, 4s only or
of 8s with 2s or 4s. Radices larger than 8 cannot be tested
at the moment because the generated OpenCL kernels for
these choices use too many registers.
Figure 7 shows the runtime measurements for the non-

hierarchical and hierarchical variations of FFT on the Kepler
K20c GPU. For the non-hierarchical FFTs, only using radix 4
leads to the best performance results for both Stockham and
Cooley-Tukey. Although, radix 8 is not an optimal choice in
theory, kernels using only this radix perform better than the
theoretically optimal radix 2. This is probably due to the fact
that the additional work for the larger radices is hidden by
more efficient memory accesses. For the hierarchical FFTs,
the best results occur when choosing the radices 812 × 4. We
assume that this is due to the fact that for faster memory
accesses to local memory, more arithmetic operations hide
memory accesses more efficiently. For radices 28, the amount
of bank conflicts is probably much larger than for the other
versions which explains the big gap in performance.

Performance of Non-Hierarchical vs Hierarchical The
hierarchical FFT offers a trade-off. On the one hand it guaran-
tees coalescedmemory accesses and a fixed set of steps, there-
fore less synchronization, but on the other hand it requires
additional copies and memory accesses. When comparing
the experimental results in figure 7 for non-hierarchical and
hierarchical FFTs the non-hierarchical FFTs are much faster
(around 3× for for the fastest versions; please note the differ-
ent scales on the y-axis). One of the main reasons is that the
chosen radices for non-hierarchical FFTs allow for coalesced
memory accesses. Therefore, one of the main advantages of
the hierarchical FFTs disappears and the extra copies to local
memory are only additional work. As the kernel runtimes are
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Figure 7. Runtime in milliseconds of Lift generated code for different radices.
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Figure 8. Runtime in milliseconds of Lift generated code (red and orange) vs. AMD’s clFFT (light blue) and Nvidia’s cuFFT
(dark blue) on Kepler K20c and Radeon RX Vega 64 GPUs.

sufficiently long the overhead of individual OpenCL kernel
launches required for each step of the hierarchical FFT are
neglectable. With these results, we do not investigate the hi-
erarchical FFT further and will focus on the performance of
non-hierarchical FFTs compared to high performance library
implementations.

Performance Comparison with the Reference Libraries
clFFT and cuFFT We compare the performance of a num-
ber of Lift generatedOpenCL kernels with two-highly tuned
reference library implementations. The cuFFT library by
Nvidia only works with Nvidia GPUs. The clFFT library
by AMD is written in OpenCL. Its FFT routines are mainly
optimized for AMD GPUs, but the library works with any
OpenCL device. The correctness of clFFT implementations
depends on launching specific numbers of work-groups and
work-items, which prevents us from tuning them similarly
to our own kernels.

For Lift, we measured the performance for three different
versions: 1) A naive version of the Stockham pass, as dis-
cussed in Section 4; 2) versions Stockham and Cooley-Tukey

where we have ensured in the code generation via rewrit-
ing that all memory accesses are coalesced; 3) versions of
Stockham and Cooley-Tukey where the multiplication of the
Butterfly matrix has been optimized with twiddle factors as
described in Section 3.3.

Figure Figure 8 shows the runtime measurements for both
GPUs. We can see for both devices that the naive version of
the Stockham FFT pass generated by Lift performs poorly.
This is due to the accesses into the global memory which
are not coalesced. For the Cooley-Tukey implementation,
the naive version naturally results in coalesced memory ac-
cesses. It is well-known that coalescing memory accesses is
an important optimization for Nvidia’s and AMD’s GPUs, as
it allows the hardware to combine memory accesses that are
simultaneously issued by multiple work-items into a single
memory access. On the Kepler K20c, there is a 4.5× perfor-
mance benefit by ensuring coalesced memory accesses (2.2×
on the Radeon RX Vega).
The optimization using twiddle factors is beneficial on

both GPUs with a performance benefit of 1.6× on Nvidia and
2.5× on AMD. The Stockham FFT implementation benefits
slightly more than Cooley-Tukey.

11
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Compared to the reference library implementation, the
Lift generated code performs well compared to the OpenCL
implementation but less well compared to cuFFT. On the
Nvidia GPU, Lift comfortably beats clFFT (by 3.0×) but
cuFFT is still significantly faster (3.8×). On the AMD GPU,
the best Lift generated version using the twiddle factor
optimization comes close to achieving about 0.68× of the
performance of the optimized clFFT library.

The performance gap between Lift and clFFT on the AMD
GPU is due to highly tuned functions for small FFTs in the
clFFT implementation that update the output array in-place
and significantly reduce the amount of arithmetic opera-
tions in a kernel. In Lift, this optimization would require
significant changes to how user functions work, if a domain
specific FFT primitive is to be avoided. At the moment, a user
function can only return scalar result values, but would have
to be able to describe in place computations with arrays as
the return type. Due to the functional nature of Lift this is
not a change that can be introduced straightforwardly and
will be subject to future research.

We cannot give a clear explanation for why cuFFT is so
much faster than Lift, because of the proprietary nature of
this library. However, function names and parameters shown
in the CUDA profiler suggest that specialized functions for
radices of large sizes (i.e., 32 or even bigger) are used. This
problem might be addressed by changing how user functions
work as well.

6 Related Work

Code Generation Approaches Spiral [7] is a code genera-
tion system that automatically generates high-performance
code for a range of computational kernels which includes
Fast Fourier Transforms. Code for CPUs, GPUs and FPGAs
has been generated. Spiral is based on a DSL that was devel-
oped to be linear transform specific. Recently, it has been
extended to express other applications as well. In Spiral, code
is generated for specific computational kernels that are de-
fined using the DSL. In contrast, Lift supports a broad range
of applications allowing the generation of high-performance
code for combinations of computational kernels.

Delite [3] is a framework for implementing DSLs that are
mapped to a small set of patterns that statically optmized
and compiled. Static device-specific optimizations are im-
plemented for separate platforms, leading to a lack of per-
formance portability. Lift tackles this problem by encoding
optimizations in an extensible system of rewrite rules.
SkelCL [18] and SkePU [6] are algorithmic skeleton li-

braries promoting high-level programming with parallel pat-
terns. SkePU is a recent C++ framework that focuses on
multi-core and multi-GPU. Similar to Delite, the optmiza-
tions introduced in the source-to-source translation have to
be implemented for separate platforms leading to a challenge
of performance portablility.

Other code generation approaches such as Halide [14] or
TVM [4] have been shown to be efficient in their respec-
tive fields. In Halide the algorithmic descriptions of image
processing applications are decoupled from their implemen-
tations. Descriptions of optimizations are provided to de-
termine how to generate code. TVM is a compiler stack for
deep learning applications. Abstract schedules consisting
of TVM specific primitives are automatically optimized and
compiled into efficient code for different back-ends. Similarly
to Spiral, both these frameworks are domain specific and not
as generic as Lift.

High Performance FFT Libraries Nvidia’s cuFFT library
[12] offers professionally optimized Cooley-Tukey based FFT
implementations for many combinations of radices using
CUDA. AMD’s clFFT library [1] generates OpenCL kernels
for specific FFT sizes. The performance of both libraries is
platform specific and hardware changes make new manual
optimizations necessary.

FFT Algorithms for GPUs Previous work on FFT for
GPUs has been published in [9, 11] which presents FFT im-
plementations based on the Stockham FFT expressed in a
low-level language focusing on optimizing memory accesses
and minimizing arithmetic operations in a hardware specific
way. In Lift, FFT variations are expressed at a high-level,
allowing exploring parallelism and memory optimizations
separately and maintaining performance portability.

7 Conclusions

In this paper, we have shown how to encode FFTs by build-
ing high-level abstractions based on a set of generic par-
allel patterns in the Lift language. This approach results
in abstractions that are derived from and closely resemble
mathematical definitions for FFTs. We have shown how the
Lift performance-portable code generator compiles these
abstractions away. Our experimental results have confirmed
that our approach achieves performance better than AMD’s
OpenCL implementation clFFT on an Nvidia GPU. Nvidia’s
highly optimized cuFFT implementation still performs better
on their GPUs.
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