
DelayRepay: Delayed Execution for Kernel Fusion in
Python

John Magnus Morton
University of Edinburgh

Edinburgh, UK
Magnus.Morton@ed.ac.uk

Kuba Kaszyk
University of Edinburgh

Edinburgh, UK
Kuba.Kaszyk@ed.ac.uk

Lu Li
University of Edinburgh

Edinburgh, UK
Lu.Li@ed.ac.uk

Jiawen Sun
University of Edinburgh

Edinburgh, UK
jsun2@exseed.ed.ac.uk

Christophe Dubach
McGill University
Montreal, Canada

Christophe.Dubach@mcgill.ca

Michel Steuwer
University of Edinburgh

Edinburgh, UK
Michel.Steuwer@ed.ac.uk

Murray Cole
University of Edinburgh

Edinburgh, UK
mic@inf.ed.ac.uk

Michael F. P. O’Boyle
University of Edinburgh

Edinburgh, UK
mob@inf.ed.ac.uk

Abstract
Python is a popular, dynamic language for data science and
scientific computing. To ensure efficiency, significant numeri-
cal libraries are implemented in static native languages. How-
ever, performance suffers when switching between native
and non-native code, especially if data has to be converted
between native arrays and Python data structures. As GPU
accelerators are increasingly used, this problem becomes
particularly acute. Data and control has to be repeatedly
transferred between the accelerator and the host.

In this paper, we present DelayRepay, a delayed execution
framework for numeric Python programs. It avoids excessive
switching and data transfer by using lazy evaluation and ker-
nel fusion. Using DelayRepay, operations on NumPy arrays
are executed lazily, allowing multiple calls to accelerator ker-
nels to be fused together dynamically. DelayRepay is avail-
able as a drop-in replacement for existing Python libraries.
This approach enables significant performance improvement
over the state-of-the-art and is invisible to the application
programmer. We show that our approach provides a maxi-
mum 377× speedup over NumPy - a 409% increase over the
state of the art.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DLS ’20, November 17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8175-8/20/11. . . $15.00
https://doi.org/10.1145/3426422.3426980

CCS Concepts: • Software and its engineering → Dy-
namic compilers; •Computer systems organization→
Heterogeneous (hybrid) systems; • Computing methodolo-
gies → Parallel programming languages.

Keywords: delayed evaluation, code fusion, dynamic com-
pilation, GPU
ACM Reference Format:
John Magnus Morton, Kuba Kaszyk, Lu Li, Jiawen Sun, Christophe
Dubach, Michel Steuwer, Murray Cole, and Michael F. P. O’Boyle.
2020. DelayRepay: Delayed Execution for Kernel Fusion in Python.
In Proceedings of the 16th ACM SIGPLAN International Symposium
on Dynamic Languages (DLS ’20), November 17, 2020, Virtual, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3426422.
3426980

1 Introduction
Python is a popular byte-code interpreted, general-purpose
programming language. It is now commonly used for both
numerical computing and machine learning, in spite of the
poor baseline performance of CPython, the mainstream im-
plementation. To improve on this, practitioners use libraries
such as NumPy — for linear algebra and general numeri-
cal computing — and PyTorch — for deep learning. These
libraries avoid the performance problems of the Python
interpreter by offloading the computation to native code.
NumPy, for example uses a mixture of C and FORTRAN.
Unfortunately, data still has to be transferred to and from
the Python interpreter, and there is an overhead when dis-
patching python function calls to native ones.
This problem is magnified when trying to use modern

accelerator hardware. Graphics Processing Units (GPUs) are
widely used for accelerating numerical computation, and
are increasingly popular with the rise of deep neural net-
works. There is, therefore, a significant interest in accessing

43

https://doi.org/10.1145/3426422.3426980
https://doi.org/10.1145/3426422.3426980
https://doi.org/10.1145/3426422.3426980

DLS ’20, November 17, 2020, Virtual, USA J. M. Morton, K. Kaszyk, L. Li, J. Sun, C. Dubach, M. Steuwer, M. Cole, and M. F. P. O’Boyle

the computational power of GPUs while maintaining the
programmability of Python. Unfortunately, GPUs are more
challenging to program than CPUs, requiring the use of
a specialized kernel language and host management APIs
such as OpenCL or CUDA. In addition, the use of accelera-
tors exacerbates the problems of data transfer between the
Python interpreter and the kernel performing the compu-
tation, Figure 1 shows a 3x speedup can be achieved for a
typical workload if such data transfers are optimized. As a
result, several Python GPU libraries have been developed to
make GPUs more accessible.
The simplest approaches, such as PyOpenCL and

PyCUDA [14], only add thin wrappers to the existing
OpenCL and CUDA APIs. Whilst this enables the writing
of host management code directly in Python, programmers
still have to write the low-level kernel code that will run on
the GPU. Numba [17] is a more advanced approach which
features a JIT compiler for accelerating Python functions.
However, programmers still have to be strongly aware of the
CUDA programming model, with the Python code resem-
bling low-level CUDA code with a Python syntax.
CuPy [20] is a drop-in replacement for NumPy, a library

that underpins other popular scientific Python libraries such
as SciPy [27] and Pandas [19]. CuPy is built on CUDA and
uses the CUBLAS library and custom GPU kernels to im-
plement the various NumPy array operations. Promisingly,
CuPy allows programmers to use NumPy arrays and opera-
tions on a GPU with minimal effort. However, it still suffers
from the overhead of switching between Python and native
code on each NumPy invocation.
Similarly to CuPy, Bohrium [15] provides a drop-in re-

placement for CuPy but focusing on performance portability
across multiple parallel platforms. Similarly to DelayRepay,
Bohrium supports kernel fusion. However, Bohrium has a
radically different compilation model, using a bytecode vir-
tual machine as an intermediate representation. This heavy-
weight runtime imposes severe performance penalties when
compared to CuPy and DelayRepay, and is difficult to debug:
CuPy and DelayRepay can output complete CUDA kernels
as source that can be reused in other applications, while
Bohrium produces compiled code and many JIT-compiled
object files to support its runtime system. The ideal scenario
would be to have the best of both worlds: easy access to GPU
performance - but without the overheads.
This paper presents DelayRepay, a drop-in replacement

for the NumPy library that allows seamless GPU accelera-
tion of existing NumPy code. DelayRepay uses a lazy array
operation mechanism and a just-in-time (JIT) compiler to
generate and execute automatically fused CUDAkernels. The
runtime system builds an execution graph of NumPy func-
tion calls which is then transformed into a graph of CUDA
kernel fragments. Instead of converting and executing each
kernel fragment independently, DelayRepay automatically
fuses fragments. The compiled kernels are executed, with

np.sin(x) ** 2 + np.cos(x) ** 2

Listing 1. Computation of the Pythagorean identity with
NumPy operators sin, cos, + and ** (power). np is an
alias for the NumPy module import.

data transfer and device memory allocation handled auto-
matically. This approach improves performance while still
completely abstracting the GPU programming model from
the programmer.

This paper makes the following contributions:
1. It presents a new delayed execution framework for

NumPy;
2. It demonstrates a novel JIT compiler for compiling

chains of NumPy operations to CUDA code;
3. It shows how this approach is used to automatically

fuse array operations for improved performance.
4. It provides a thorough evaluation of this approach

compared to the current state-of-art method.
The rest of this paper is structured as follows. Section 2

outlines our motivation. Sections 3 and 4 describe the ap-
proach and implementation of our NumPy delayed execution
framework and JIT compiler. We present and discuss our
experimental results in section 5. Finally, Sections 6 and 7
present related and future work.

2 Motivation
Python has become a popular language for intensive numer-
ical code, despite its humble beginning as a scripting and
application language. This success has been made possible
thanks to the availability of a wide range of high performance
libraries, such as NumPy. These libraries are typically imple-
mented in native code under the hood, since pure Python
code is often significantly slower than native code.

2.1 GPU Execution with CuPy
CuPy strives to deliver high-performance on GPUs by sup-
portingmost NumPy operations. It achieves this by having all
major operators (e.g., vector addition) implemented as CUDA
kernels. CuPy keeps the data on the GPU between calls to
different operators. This strategy minimizes data transfer
which is one of the main source of overheads. Nonetheless,
when executing a sequence of GPU operations, control will
go back and forth between Python and the GPU. This results
in multiple GPU kernel calls, which induce non-negligible
overheads even when data remains on the GPU.

Consider the Python code in listing 1 which makes use of
NumPy operations. This snippet computes the Pythagorean
identity element wise over a NumPy input array x. Running
this expression inNumPy invokes five separate computations
implemented in the C backend of NumPy.

44

DelayRepay: Delayed Execution for Kernel Fusion in Python DLS ’20, November 17, 2020, Virtual, USA

Figure 1. Execution time of separate kernels vs. fused ker-
nels for the pythagorean_id benchmark. Time spent as GPU
execution includes data transfer and kernel execution. Input
array size is 808 MB.

This code can be executed with CuPy unchanged by modi-
fying some import statements. Running it with CuPy results
in compiling and executing five CUDA kernels, and the al-
location of four on-device buffers (three for intermediate
results and one for the final result).

2.2 Lazy Fusion with Bohrium
Similarly to CuPy, Bohrium [15] provides a drop-in replace-
ment for NumPy. Unlike CuPy, Bohrium aims for perfor-
mance portability, targeting multiple backends including
CUDA, OpenCL and OpenMP. Bohrium achieves this using
its vector bytecode virtual machine, a heavyweight compila-
tion and runtime system. Similarly to DelayRepay, Bohrium
has support for array operator fusion via lazy evaluation [16].
However, Bohrium’s vector bytecode imposes a severe per-
formance penalty (Section 5.4.2).

In contrast, DelayRepay’s novel lightweight lazy fusion at
the NumPy AST level allows Python developers to benefit
from kernel fusion with a significantly reduced overhead.
We have designed DelayRepay explicitly for extensibility,
allowing the possibility of programmable heuristics being
added at the Python level. DelayRepay also provides benefits
in debugging, with the generated kernels available to view
if required. These kernels are portable, and can be reused in
other CUDA programs.

2.3 The Need for Fusion of Operations
Figure 1 shows the run time breakdown for executing the five
separate GPU kernels corresponding to the code in Listing 1.
It also shows the time it takes, if these five kernels are fused
into a single GPU kernel. The fused versions is 2× faster
than the un-fused version. Since CuPy keeps the data on the
GPU between kernel invocations, the difference in execution
time is mainly due to:

• the overheads of launching five separate kernels in-
stead of a single one from Python;

• the additional memory reads and writes required to
pass data between the separate kernels.

This example illustrates the core problem that this paper
addresses. Python GPU libraries, such as CuPy, implement a
wide range of small primitives, eachwith their corresponding
GPU kernels.
GPU kernel fusion [28, 29] is an optimization technique

that is especially well-fitted when crossing a language border
is costly. Fusing kernels also has the potential for increasing
the compute intensity and increasing data locality between
operations. Fusing also decreases memory footprint by re-
moving the need for intermediate results.

The goal of this paper is to develop a runtime mechanism
to support the automatic fusion of GPU kernels, without
having to make modifications to the existing Python code.
We wish to achieve this in a way which allows implicit and
automatic fusion of GPU kernels, to reduce the overheads
associated with several separate GPU kernel calls.

2.4 Overview
This paper introduces a delayed execution mechanism for
the popular NumPy library coupled with a compiler-based
fusion mechanism. Figure 2 presents the overview of our
approach. DelayRepay takes NumPy code as input with min-
imal modifications required. It only requires to replace the
import statement of NumPy to our library.
The delayed execution mechanism returns an AST node

when calling a NumPy operation, delaying its execution.
When the result of such an operation serves as an input to
another NumPy operation, the AST is simply extended, im-
plementing a lazy evaluation strategy. When a non-NumPy
operation is called on the resulting AST node, this triggers
the compilation to a CUDA kernel and finally, execution
on the GPU. This lazy evaluation strategy is the first major
difference to existing solutions. CuPy for instance, eagerly
executes each NumPy operation as an individual kernel on
the GPU.
The delayed execution mechanism enables the ability to

fuse operations before execution on the GPU. This is the
second big difference to CuPy. Our compiler-based fusion
mechanism fuses multiple NumPy operations together. This
reduces the overheads of individual kernel launches. Once
the operators are fused, DelayRepay generates and executes
CUDA kernels on the GPU.
As we will see in the following sections, our approach is

built on top of the existing CuPy library and requires only
minor modifications to the original library code.

3 Delayed Execution
This section describes the design and implementation of
DelayRepay, our delayed execution framework for NumPy.

45

DLS ’20, November 17, 2020, Virtual, USA J. M. Morton, K. Kaszyk, L. Li, J. Sun, C. Dubach, M. Steuwer, M. Cole, and M. F. P. O’Boyle

NumPy
Code

import delayrepay
as np

np.sin(x) ** 2
+ np.cos(x) ** 2

DelayRepay

Delayed Execution Compiler-based Fusion

CUDA
Kernel
Code

+

** **

x x

sin cos
2222

AST Fused AST

x

+
** **
sin cos

2Build AST Fuse Ops Generate Code

Figure 2. DelayRepay starts with standard NumPy code with a modified import. During runtime, NumPy operations are
delayed by building, step-by-step, an AST. Then, chains of operations are fused. Finally, the compiler generates a single CUDA
kernel from the fused operations and the kernel is executed.

Driven by the issues discussed in Section 2, our design goals
with DelayRepay are to develop a drop-in replacement for
NumPy that improves performance with automatic kernel
fusion. This is achieved without any changes to existing
programs, other than replacing a single import statement.

3.1 Numpy Basics
The NumPy library is built around its native n-dimensional
array implementation the ndarray type. Universal Functions
(known as ufuncs) are elementwise functions that operate
on ndarray instances. These ufuncs are broadcast over the
ndarray, i.e., these functions are vectorised, automatically.
Examples of ufuncs include elementwise add and trigonomet-
ric functions. NumPy has other built in functions that operate
on ndarray such asmatrixmultiplication or dot product. The
semantics of some functions, such as dot, change depending
on the shapes of its inputs. The dot function can be a dot
product, matrix multiplication or matrix-vector multiplica-
tion, and this is only determined at runtime. Unlike ufuncs,
these functions are not broadcast at the NumPy level.

3.2 Delayed Mechanism with NumPy
The NumPy original ndarray is implemented as a class in
Python. To achieve our goal of delaying execution of any
ndarray operations, we simply extend this class with our
own DelayArray class. Using the existing Python inheri-
tance mechanism, our class simply overrides all the original
operators from the ndarray class.
Our implementation of the operators always returns a

DelayArray object rather than the result of executing the
operator. Our DelayArray object captures the call graph of
the various operations performed as an AST, as seen in fig. 2.
No NumPy calls are evaluated during this process, and other
Python interpretation carries on as normal. The AST is not
compiled or executed until it absolutely needs to be.

Listing 2 shows a simplified version of our implementation.
As can be seen, our DelayArray class overrides the main en-
try points of the original NumPy ndarray. The difference
is that instead of directly executing the various operators,
we construct AST nodes which are all sub-classes of the
NumpyEx class, representing NumPy expression. This allows
us to chain multiple such operations and trigger execution at
a later stage. We have a BinaryFuncExpression class repre-
senting binary ufuncs (e.g., add, multiply) and specific nodes
for other array functions (e.g., ReduceEx). The leaf nodes in
the tree can be either Scalar, representing a numeric con-
stant, or NPArray, representing a reference to an original
NumPy array.

The special __repr__ function returns a String represen-
tation of the array. The special __array__ function returns
an actual original NumPy array. These functions will be
discussed in more detail below.

3.3 Implicit Execution
Tensor-based machine learning frameworks such as PyTorch
and Tensorflow also build expression graphs, but evaluation
is forced explicitly and eagerly. In DelayRepay, the expres-
sion graph is compiled and evaluated onlywhen computation
cannot feasibly continue on the GPU. This happens for in-
stance when the result needs to be sent to I/O (e.g., printing
result) or if the resulting array is needed in non-NumPy or
unsupported computation.

We achieve this by defining the __repr__ and __array__
methods of our DelayArray class. The __repr__ method is
used to define the pretty-printed representation (and in our
case, the string representation) of an object. The __array__
method is invoked when NumPy converts an array-like ob-
ject into an ordinary NumPy ndarray. When __array__ is
invoked on a DelayArray instance, evaluation is forced.

46

DelayRepay: Delayed Execution for Kernel Fusion in Python DLS ’20, November 17, 2020, Virtual, USA

1 class DelayArray:

2 ...

3 def __array_ufunc__(self ...):

4 ...

5 if isunaryfunc(func):

6 return UnaryFuncEx(func ,

↩→ arg)

7 ...

8 def __array_function__(self ...):

9 ...

10 def dot(self ...):

11 ...

12 def __repr__(self :...):

13 ...

14 def __array__(self :...):

15 ...

16 class NumpyEx(DelayArray):

17 ...

18 class ReduceEx(NumpyEx):

19 ...

20 class UnaryFuncEx(NumpyEx):

21 def __init__(self , func ,arg):

22 # store function name

23 self.func = func

24 # store function argument

25 self.children = [arg]

26 class BinaryFuncEx(NumpyEx):

27 ...

28 class NPArray(NumpyEx):

29 ...

30 class Scalar(NumpyEx):

31 ...

32 class CuPyExp(NumpuEx):

33 ...

34 ...

Listing 2. Interface to our NumPy array replacement and
delayed AST types

3.4 Example
Listing 3 shows the step-by-step execution of the Pythagorean
identity Python benchmark. Line 3 starts by creating an array
filled with random values. Then line 6 calls the sin func-
tion which is one of the operators that our DelayArray class
supports. As a result of this call, an AST node representing
the sin unary function is returned in lieu of the actual data,
delaying the execution of this operation. On line 9, a similar
process occurs where an AST node representing the power
function, applied to its argument (one of them being an AST
node itself) is returned. This process continues with the other

1 import delayrepay as np

2
3 data = np.random.random ((1000 ,))

4 # data = NPArray

5
6 l = np.sin(data)

7 # l = UnaryFuncEx('sin ', data)

8
9 l_sq = l ** 2

10 # l_sq = BinaryNumpyEx ('**', l, 2)

11
12 r = np.cos(data)

13 # r = UnaryFuncEx('cos ', data)

14
15 r_sq = r ** 2

16 # r_sq = BinaryNumpyEx ('**', r, 2)

17
18 tot = l_sq + r_sq

19 # tot = BinaryNumpyEx('+', l_sq ,

↩→ r_sq)

20
21 print(tot)
22 # GPU evaluation forced here

Listing 3. Annotated code sample showing how
intermediate wrapper types are returned during delayed
evaluation

function calls until a call the call to print on line 21. At this
point, print will internally call our overriden __repr__ func-
tion which will trigger a compilation and execution of the
tree of operations.

3.5 Fall-Back Mechanism
Our delayed execution targeting the GPU is built on the GPU
execution capabilities of CuPy. To maintain full backwards
compatibility with NumPywe provide a fall-backmechanism.
For any un-implemented NumPy functions, we implicitly fall-
back to the implementation provided by CuPy targeting the
GPU. For operations executed via the fall-back mechanism
we wrap the resulting array using a CuPyExp class instance
to allow composition with the rest of our system. When
such an operation is encountered, the system will trigger
an immediate evaluation since a CuPyExp is treated as an
opaque operation that will never be fused with any of the
preceding operations.

4 Compiler-Based Fusion
The delayed execution phase produces an AST containing
nodes representing NumPy operations. In a second phase,
when execution is implicitly triggered, DelayRepay fuses

47

DLS ’20, November 17, 2020, Virtual, USA J. M. Morton, K. Kaszyk, L. Li, J. Sun, C. Dubach, M. Steuwer, M. Cole, and M. F. P. O’Boyle

compatible operators together. A GPU kernel is generated
for each fused operation and then executed. The final result
of the computation is copied from the GPU back into a fresh
NumPy array which is returned to the Python code.

4.1 Operator Fusion
Unlike traditional forms of GPU kernel fusion that work
at the level of kernel source code, DelayRepay’s fusion ap-
proachworks on a high-level abstraction - our AST of NumPy
expressions. This has several benefits:

• first, the implementation is fairly simple and not con-
cerned with performing analysis on low-level code (e.g.
investigating array indexing and pointer arithmetic)
to determine which kernels can be fused;

• secondly, this results in a very quick fusion process;
• finally, our fusion implementation is not tied to one
accelerator programming API and could easily be ex-
tended to others such as OpenCL or SYCL.

DelayRepay’s fusion algorithm is simple: DelayRepay greed-
ily fuses every lazy AST into one kernel each. This is safe
since operations that would break fusion e.g. a reordering of
an array, trigger eager evalution of their input, falling-back to
the appropriate CuPy operation. NumPy’s broadcasting rules
also prevent the fusion of shape-mismatched operations.

There are cases where operations can not be fused straight-
forwardly or when fusion is not desirable. For example, when
computing the sum of an array and using this result in a
larger computation, generating a performant fused kernel
is difficult. DelayRepay’s fallback mechanism handles such
cases and produces multiple CUDA kernels. Work is ongoing
on a programmable heuristic system to control when fusion
will happen in such cases.

4.2 CUDA Kernel Generation
When eager evalution is triggered, DelayRepay generates
CUDA kernels.

At a high-level, we traverse the tree in post-order, convert
it into SSA form by translating each node into a simple CUDA
expression. These expressions are then simply spliced into a
CUDA kernel template that handles bookkeeping and input
and output arrays.
In detail, at each node, we collect some meta data in the

form of a Fragment object that represents the core pieces
of an incomplete CUDA kernel: a name, a list of statements
describing the computation to be performed, and a dictionary
of inputs. Each statement is a one-line CUDA statement.
Each statement is generated in SSA form and appended to
a list that has been generated recursively while traversing
the previous nodes. For example, in the case of a binary
expression these statements have form T out = input1 <op>
input2 where <op> is the binary operator and T represents
the type. DelayRepay provides templates for the different
possible expression type e.g. unary and binary function calls.

1 class NumpyEx(DelayArray):

2 ...

3 def to_kernel(self):

4 # Merge statements

5 body = concat(self.stmts)

6 # Generate kernel argument

↩→ signature

7 input_types =

8 arg_types(self.kernel_args)

9
10 # Construct kernel template object

11 return cupy.ElementwiseKernel(

12 input_args ,

13 self.return_type ,

14 body ,

15 self.name}

16)

Listing 4. Kernel generation pseudocode

The dictionary of inputs contains keys possibly referring to
fragment names or values represented by InputFragment
that encapsulate either a reference to an input array or to
the output of another GPU kernel.
In our kernel generation we take advantage of the fact

that it happens dynamically at runtime. Therefore, we know
the values of all non-array variables and simply treat them
as constants, folding their values directly in the generated
kernel i.e. partially evaluating the scalar part of the program.
This avoids complications such as wrapping scalar variables
as single-element arrays common in other approaches and
also enables further benefits such as constant-folding opti-
misations by the CUDA compiler.

As each node is visited, a Fragment object is created that
merges the statement lists and input dictionaries of the
node’s children. The final fragment returned from the root
of the tree encapsulating a complete kernel. For this, we gen-
erate the code as shown in Listing 4 for the the element-wise
case. The statements in the list are concatenated together
and used as the body of a CuPy ElementWiseKernel. Our
implementation also supports the generation of reductions
via CuPy’s ReductionKernel. These CuPy kernels are light-
weight abstractions used to template CUDA kernels and
automatically generate code for handling the thread and
workgroup IDs.

The compilation process is entirely deterministic i.e. the
same NumPy program will generate exactly the same CUDA
kernel with repeated runs, even with different inputs. This
means our implementation is able to leverage caching of
generated and compiled kernels.

48

DelayRepay: Delayed Execution for Kernel Fusion in Python DLS ’20, November 17, 2020, Virtual, USA

1 #include <cupy/carray.cuh >

2 __global__ void
3 kernel(const CArray <double ,1> _in ,

4 CArray <double ,1> _out

↩→ ,

5 CIndexer <1> _ind) {

6 CUPY_FOR(i, _ind.size()) {

7 _ind.set(i);

8 const double &in = _in[_ind.get()

↩→];

9 double &out = _out[_ind.get()];

10 double unfunc1 = sin(in);

11 double binex2 = unfunc1 * unfunc1;

12 double unfunc3 = cos(in);

13 double binex4 = unfunc3 * unfunc3;

14 double binex5 = binex2 + binex4;

15 out = binex5;

16 }

17 }

Listing 5. Automatically generated fused Pythagorean
identity GPU kernel code.

We generate one such kernel for each fused operation.
These kernels are then compiled by CUDA and scheduled
for execution.

4.3 Generated Kernel Example
Listing 5 shows the kernel generated for the Pythagorean
identity. The generated code makes use of templates and
macros provided by CuPy. The CArray template is a wrap-
per for accessing NumPy arrays on the GPU. In the one
dimensional case these correspond to raw-pointers. The
CIndexer provides an abstraction to index into (potentially
multi-dimensional) arrays. Finally, the CUPY_FOR macro ab-
stracts the use of thread ids away distributing thework across
all global threads.
After providing references for accessing the input and

output arrays in lines 9 and 10, the next five lines (11–15)
correspond to the individual operations of the Pythagorean
identity computation: element-wise computation of the sin
and cos functions (lines 11 and 13), computing the power
of two (lines 12 and 14), and adding up the intermediate
results in line 15. Finally, the computed value is written to
the output array via the reference (line 16).

4.4 Execution of CUDA kernels
Since our implementation is built on CuPy, we can benefit
from its existing infrastructure for scheduling kernels and
managing memory. Our wrapped arrays are automatically

allocated on the GPU device, and data is transferred trans-
parently. Similarly, space for result arrays is automatically
managed. CuPy hooks GPU memory buffers to Python’s
garbage collector, so no-longer needed data is automatically
deallocated. CuPy also allows us to use a normal Python func-
tion call syntax to invoke the kernel with its arguments - no
need for explicit function calls to set kernel arguments. Us-
ing these tools, we simply call each kernel in order and store
its result. Future dependent kernels can access this stored
result as needed. The result of the final kernel invocation is
returned to the user.

5 Evaluation
This section evaluates our DelayRepay runtime and compiler
against the CuPy system, the Bohrium compiler and runtime
system, and the standard CPU Numpy library using a se-
lection of realistic NumPy benchmarks. Since DelayRepay
is a drop-in replacement for NumPy our benchmarks are
unmodified from their NumPy versions, except for chang-
ing the module imports. Our benchmarks are selected to be
as realistic as possible and to cover as much of the NumPy
API as possible. All benchmarks are of a data-parallel nature
making them appropriate for GPUs.
We measure the performance of each library for the

warmed-up execution times for each benchmark. ‘Warmed-
up’ means that a previous run has completed, so analysis
and GPU kernel compilation has been cached where possi-
ble, and we record this warmup time. We also measure the
wall-clock time for a single end-to-end run for each bench-
mark including the time to launch and shutdown the Python
interpreter.

Our primary results report benchmark speed-ups against
NumPy, CuPy and Bohrium. We then relate the speedups to
the fusion of kernels and improved memory usage to gain
insights on the reported performance improvements.

5.1 Benchmarks
We have modified and extended an existing Numpy bench-
mark suite. Many of the benchmarks were originally sourced
from StackOverflow, a popular programming question and
answer forum, indicating that they are being used in the
open source community.
We parameterized the benchmarks to easily select the

library we wish to benchmark and control data creation and
repetition. A brief description of each benchmark is found
in Table 1.

The benchmarks are mostly high-level numerical NumPy
programs. This selection aims to exercise as much of the
libraries as possible, with benchmarks covering element-
wise array operations, reductions, array slicing, and various
combinations and repetitions of these.

49

DLS ’20, November 17, 2020, Virtual, USA J. M. Morton, K. Kaszyk, L. Li, J. Sun, C. Dubach, M. Steuwer, M. Cole, and M. F. P. O’Boyle

Table 1. Benchmark descriptions

Benchmark Description
arc_distance Pairwise arc distance between all

points in two vectors
create_grid Creates and reshapes grid
cronbach Cronbach’s 𝛼 function. Bohrium pro-

duces an error when running this
benchmark

euclidean_dist- Square of Euclidean distance
ance_square
evolve Laplacian evolution
grayscott Gray-Scott reaction diffusion model
harris Harris corner detection
hasting Hasting and Powell mode
l1norm L1 Norm
l2norm L2 Norm
laplacien Laplace transform
log_likelihood Log-likelihood of normal distribution
lstsqr Least squares solution to linear sys-

tem of equations
nn Simple numpy neural network
pairwise Pairwise linear distance
pythagorean_id Computes Pythagorean identity
repeating Fills matrix using the repeat function
reverse_cumsum Reverse cumulative sum of array
rosen Rosenbrock function
specialconvolve Image convolution
vibr_energy Classical mechanics

5.2 Hardware and Software Platform
All benchmarks are run on a server running OpenSUSE LEAP
42.1 with a 12-core Intel Xeon E5-2620 running at 2.00 GHz,
16 GB RAM and a nVidia Tesla K20 with XGB of VRAM. The
CUDA version is 8.0.1, the CuPy version is 7.2.0, the NumPy
version is 1.18.1, and the Bohrium version is 0.11.0.

5.3 Experimental Methodology
Our benchmark framework runs each benchmark for NumPy,
CuPy, Bohrium, and DelayRepay. These dependencies are
injected at runtime. For each run, the framework creates the
required input data and then performs a warmup run of the
benchmark, followed by 10 iterations. When the set of 10
runs is complete, the framework clears all GPU kernel caches:
the CUDA compute cache; the CuPy cache of generated and
compiled kernels; Bohrium’s cached binary CUDA kernels,
compiled bytecode and object files; and DelayRepay’s inter-
nal analysis cache.

For the end-to-end wall-clock benchmarking runs, we fork
a new Python process to run the entire benchmark. 10 runs
are recorded without any warmup, and we clear all compute
and kernel caches as before, but also clear the caches between

repetitions of each benchmark, as well as between different
benchmarks and libraries.
For both sets of benchmarking runs, we report the mean

execution time of the 10 runs.
We profile with Python’s built-in cProfile tool.

5.4 Performance Results
This section details the results of the experiments described
above. The speedups achieved for the core computations are
shown in Figure 3 and for the end-to-end execution of the
entire benchmark application are shown in Figure 4. The
detailed numbers reported in these figures can be found at
the end of the paper in Table 2 and Table 3.

5.4.1 Speed-up ofComputationalCode. Figure 3 shows
the overall speedups of the DelayRepay and CuPy compu-
tation times against a NumPy baseline. We can make the
following observations:
First, we can see that all evaluated benchmarks benefit

from the GPU execution. This is not surprising as it confirms
the data-parallel nature of NumPy code.

Second, there are no benchmarkswhere CuPy significantly
outperforms DelayRepay.
Third, the mean speedup is generally close to the max-

imum speedup. Several benchmarks show a significantly
lower minimum speedup for all libraries, suggesting a lim-
itation in our warmup approach here. This effect is more
pronounced with Bohrium.
Finally, DelayRepay outperforms CuPy on a number of

benchmarks including arc_distance, pythagorean_id,
vibr_energy and harriswhere DelayRepay achieves about
a twice as high speedup over NumPy as CuPy does. De-
layRepay outperforms Bohrium on some benchmarks, while
Bohrium outperforms DelayRepay on others. We note that
Bohrium significantly underperforms DelayRepay, CuPy and
NumPy in several benchmarks. Across all benchmarks, De-
layRepay achieves a geometric mean speedup of 24.05×
compared to 15.11× by CuPy - a 60% increase in the mean
speedup - and 10.51× by Bohrium - a 130% increase in the
mean speedup. DelayRepay achieves a maximum speedup
of 377.40× compared to 74.06× by CuPy - a 409% increase -
and 203.16× by Bohrium - an 86% increase.

5.4.2 Speed-up of End-to-EndExecution. Figure 4 shows
the speedup of the end-to-end execution that includes the
time used for executing the non-NumPy Python code. This
results show where the use of the GPU pays off. We can
make the following observations:
First, not all benchmarks benefit from executing on the

GPU when including the additional time the benchmark
takes to execute on the Python interpreter.

Second, there are still a number of benchmarks that achieve
large (>4×) speedup compared to NumPy when executed
with DelayRepay (e.g., log_likelihood, vibr_energy, and
pythagorean_id).

50

DelayRepay: Delayed Execution for Kernel Fusion in Python DLS ’20, November 17, 2020, Virtual, USA

arc_d
ista

nce

cre
ate_grid

cro
nbach

evolve

graysco
tt

l1norm
l2norm

laplacien

log_lik
elihood

lsts
qr

pairw
ise

pythagorean_id

repeating

reverse
_cu

msum
rosen

specialconvolve

vibr_e
nergy

euclid
ean_dista

nce_sq
uare

harris nn

Benchmark

0.0625

0.25

1

4

16

64

256

Sp
ee

du
p

vs
 N

um
py

 (c
om

pu
ta

tio
n

on
ly

)
Cupy, Bohrium, DelayRepay Speedup vs Numpy (computation only)

DelayRepay geometric mean
CuPy geometric mean
Bohrium geometric mean
CuPy
Bohrium
DelayRepay

Figure 3. Speedup of computational code of CuPy and DelayRepay over the NumPy baseline. Higher is better. DelayRepay
clear outperforms NumPy on all and CuPy and Bohrium on most benchmarks. Error bars represent the minimum and maximum
speedup achieved. Bohrium produced an error when running cronbach.

arc_d
ista

nce

cre
ate_grid

cro
nbach

evolve

graysco
tt

l1norm
l2norm

laplacien

log_lik
elihood

lsts
qr

pairw
ise

pythagorean_id

repeating

reverse
_cu

msum
rosen

specialconvolve

vibr_e
nergy

euclid
ean_dista

nce_sq
uare

harris nn

Benchmark

2−4

2−2

20

22

Sp
ee

du
p

vs
 N

um
py

 (e
nd

-to
-e

nd

Cupy,Bohrium and DelayRepay Speedup vs Numpy (end-to-end)

DelayRepay geometric mean
CuPy geometric mean
Bohrium geometric mean
CuPy
Bohrium
DelayRepay

Figure 4. Speedup of end-to-end benchmarks of CuPy and DelayRepay over the NumPy baseline. Higher is better. Most
benchmarks benefit from GPU execution. Error bars represent the minimum and maximum speedup achieved. With De-
layRepay multiple benchmarks are profitable that are not using CuPy (arc_distance, evolve, rosen, specialconvolve, and
harris) or Bohrium (arc_distance, repeating, vibr_energy, evolve, create_grid, l1norm, pythagorean_id, repeating,
reverse_cumsum, rosen, specialconvolve, and harris). Bohrium produced an error when running cronbach.

51

DLS ’20, November 17, 2020, Virtual, USA J. M. Morton, K. Kaszyk, L. Li, J. Sun, C. Dubach, M. Steuwer, M. Cole, and M. F. P. O’Boyle

arc_d
ista

nce

cre
ate_grid

cro
nbach

euclid
ean_dista

nce_sq
uare

evolve

graysco
tt

harris
l1norm

l2norm
laplacien

log_lik
elihood

lsts
qr nn

pairw
ise

pythagorean_id

repeating

reverse
_cu

msum
rosen

specialconvolve

vibr_e
nergy

Benchmark

0

50

100

150

200

250

300

Ge
ne

ra
te

d
ke

rn
el

 %

Number of Bohrium and DelayRepay kernels as a percentage of CuPy kernels
Bohrium
DelayRepay

Figure 5. Relative number of kernels generated by Bohrium and DelayRepay as a fraction of number of kernels generated by
CuPy. Lower is better.

arc_d
ista

nce

cre
ate_grid

cro
nbach

euclid
ean_dista

nce_sq
uare

evolve

graysco
tt

harris
l1norm

l2norm
laplacien

log_lik
elihood

lsts
qr nn

pairw
ise

pythagorean_id

repeating

reverse
_cu

msum
rosen

specialconvolve

vibr_e
nergy

Benchmark

0

25

50

75

100

125

150

175

200

M
em

or
y

us
ag

e
%

Bohrium and DelayRepay memory usage as a percentage of CuPy memory
Bohrium
DelayRepay

Figure 6. Relative memory usage of Bohrium and DelayRepay as a percentage of CuPy. Lower is better.

Third, the observed speedups are much more stable than
for the computation-only benchmarks.
Finally, there are a number of benchmarks that become

profitable to be executed on the GPU with DelayRepay that
are not when using CuPy or Bohrium, with Bohrium pro-
ducing a number of extreme slowdowns.

This includes arc_distance, evolve, rosen,
specialconvolve, and harris for CuPy; and arc_distance,
repeating, vibr_energy, evolve, create_grid, l1norm,
pythagorean_id, repeating, reverse_cumsum, rosen,
specialconvolve, and harris for Bohrium. These are the
benchmarks where the additional optimisation of kernel

52

DelayRepay: Delayed Execution for Kernel Fusion in Python DLS ’20, November 17, 2020, Virtual, USA

Table 2. Computation-only benchmark results

Benchmark Numpy (s) CuPy (ms) Bohrium (ms) DelayRepay (ms) Input Size (MB)
arc_distance 1.96 26.45 9.64 5.19 320.00
create_grid 0.62 52.21 145.52 52.22 0.00
cronbach 4.16 184.21 N/A 184.26 0.06
euclidean_distance_square 1.18 87.21 25.30 87.13 2400.00
evolve 1.98 120.51 10801.32 64.49 3200.00
grayscott 2.52 196.39 151.98 271.78 2304.12
harris 3.11 99.84 186.63 24.88 800.00
l1norm 3.15 215.66 442.72 215.66 665.40
l2norm 0.91 91.03 156.73 42.32 0.00
laplacien 3.26 475.70 26.92 361.24 476.79
log_likelihood 7.48 210.02 88.04 136.07 7.18
lstsqr 2.29 547.66 60668.87 547.65 1568.00
nn 0.87 93.46 24.01 96.42 800.00
pairwise 1.59 277.14 27.83 277.18 1536.00
pythagorean_id 3.56 75.65 54.79 13.74 808.00
repeating 2.24 44.82 7826.68 44.85 1624.00
reverse_cumsum 1.63 590.95 21.34 591.04 105.71
rosen 1.68 245.51 13.53 128.78 1.36
specialconvolve 1.85 132.55 3031.52 61.74 666.89
vibr_energy 4.21 93.90 1191.17 22.63 80.00

fusion enabled by our delayed execution strategy pays off
compared to the eager execution strategy employed by CuPy,
while our lightweight analysis and code generation approach
pays off against Bohrium’s heavyweight bytecode generation
approach.
On average, using the geometric mean, CuPy is slower

than NumPy with a speedup of 0.77×, Bohrium is signifi-
cantly slower than NumPy with a speedup of 0.37×, while
DelayRepay achieves a speedup of 1.25×. DelayRepay achieves
a maximum speedup of 6.79× compared to 3.75× by CuPy
and 3.85× by Bohrium.

5.5 Analysis
Figure 5 and Figure 6 provide some insights into the perfor-
mance achieved by DelayRepay over CuPy. Figure 5 shows
the percentage of kernels generated by DelayRepay and
Bohrium compared to CuPy for each benchmark. Figure 6
show the memory usage of DelayRepay and Bohrium as a
percentage of CuPy’s memory usage.
We can see in Figure 5 that for benchmarks with large

performance advantage over CuPy such as arc_distance or
log_likelihoodDelayRepay executes a fraction of the GPU
kernels that CuPy does by applying the fusion optimization.
This results also in a reduced memory usage versus CuPy,
as shown in Figure 6, as less intermediate results have to be
stored.

The direct comparison of Bohrium in Figure 5 is less use-
ful as it is not based on CuPy, and we have no knowledge

of what an unfused Bohrium baseline looks like. However,
we observe that generally, Bohrium produces more CUDA
kernels than DelayRepay when DelayRepay outperforms
Bohrium and vice versa. DelayRepay uses marginally less
memory than Bohrium for most benchmarks.
The nn benchmark is an outlier where our fusion imple-

mentation produces more kernels than CuPy, resulting also
in a higher memory usage and poor performance compared
to CuPy. This is a result of the constant folding optimisa-
tion described in Section 4.2: each round of the algorithm
uses different weight values, which results in DelayRepay
generating a new kernel each time, the only difference in
each being the constant values. CuPy generates only one
kernel and reuses it, passing in the scalar values as param-
eters. Work is ongoing into an heuristic that would disable
this optimisation in such cases.
The grayscott benchmark is an interesting case where

fusion results in poorer performance compared to CuPy. This
particular benchmark is a stencil-like computation which
performs operations on sub-arrays of a larger matrix. Our
fusion algorithm produces a single huge kernel that takes
over two hundred input arrays. We suspect the compilation
time and the memory overhead result in a slowdown here.
The insights presented in Figure 5 and Figure 6 confirm

that fusion is the reason for the performance benefits ob-
served by DelayRepay compared to CuPy.

53

DLS ’20, November 17, 2020, Virtual, USA J. M. Morton, K. Kaszyk, L. Li, J. Sun, C. Dubach, M. Steuwer, M. Cole, and M. F. P. O’Boyle

Table 3. End-to-end benchmark results

Benchmark NumPy (s) CuPy (s) Bohrium (s) DelayRepay (s) Input Size (MB)
arc_distance 2.02 5.35 6.00 0.66 320.00
create_grid 0.68 0.57 3.36 0.62 0.00
cronbach 3.69 4.45 N/A 4.45 0.06
euclidean_distance_square 1.40 2.68 3.40 2.73 2400.00
evolve 2.08 2.50 14.67 1.48 3200.00
grayscott 2.56 45.44 10.92 42.95 2304.12
harris 2.81 3.10 3.41 1.53 800.00
l1norm 2.71 1.63 11.91 1.66 665.40
l2norm 0.98 2.01 6.34 1.48 0.00
laplacien 3.75 3.66 2.93 2.61 476.79
log_likelihood 7.75 4.92 2.01 1.15 7.18
lstsqr 1.87 3.96 64.55 3.88 1568.00
nn 0.96 5.10 1.86 6.91 800.00
pairwise 1.63 1.74 3.09 1.71 1536.00
pythagorean_id 3.62 2.10 7.47 0.60 808.00
repeating 2.33 0.62 32.00 0.58 1624.00
reverse_cumsum 2.06 1.56 2.23 1.56 105.71
rosen 1.70 3.11 1.83 1.10 1.36
specialconvolve 1.88 1.99 6.23 1.06 666.89
vibr_energy 3.85 2.50 5.48 0.57 80.00

6 Related Work
GPUAcceleratedDrop-InNumPyReplacements. There

are a number of related projects that act as a drop-in replace-
ment for NumPy, utilizing the GPU to improve performance.
CuPy [20], introduced earlier in Section 2.1, is a drop-in

replacement for NumPy on GPUs, and forms the basis for
our work on DelayRepay. CuPy off-loads operations onto
GPUs and supports multi-GPU execution, but without a drop-
in NumPy interface. It requires programmers to manually
manage multi-GPU data movement and synchronization.

Bohrium [15], introduced earlier in Section 2.2, is a drop-in
replacement for NumPy that accelerates programs on GPUs
by performing lazy evaluation of Numpy programs before
fusing operators. Bohrium supports CPUs and GPUs.

Legate NumPy [3] by NVIDIA provides a drop-in replace-
ment for GPUs using kernel fusions to accelerate NumPy
code. It is built on the top of the Legion task-based runtime
system, which achieves high performance and scalability on
a wide range of supercomputers [4]. However, the imple-
mentation of Legate relies heavily upon the Legion specific
programming model and runtime system [4] - decreasing
its utility as a drop-in replacement for NumPy - whereas
DelayRepay only requires the freely-available CuPy Python
library and a standard CUDA installation. Legate NumPy
also does not perform kernel fusion and has an eager eval-
uation model. Furthermore, Legate is aimed specifically at
distributed computing workloads on high-performance com-
puting clusters.

Kernel Fusion. There has been a large body of work look-
ing into fusion of GPU kernels. Arash et al. [1] present an
analytical model that considers input data characteristics and
available GPU resources to estimate near-optimal settings
for kernel launch parameters to optimize machine learning
workloads. Kernel fusion can also reduce energy consump-
tion and improve power efficiency on GPU architectures [28].
Both of these introduce kernel fusion methods to achieve
higher hardware utilization and reduce the total energy op-
timization without performance loss, in the field of Machine
Learning. In contrast, PyDelay tries to optimise NumPy pro-
grams by tracking arrays without programmer intervention,
and is application agnostic.

Several domain specific languages aimed at performance
support array operation fusion or loop fusion, including
Delite [26], Accelerate [18], Build to Order BLAS [5], Fire-
drake [23] and Taskgraph [2].

There has also been work on fusion of array operations in
non-GPU contexts. Single-Assignment C [24] and the work
of Shei et al. on MATLAB [25] both use array operation
fusion.
Much of this work is similar in spirit to earlier optimi-

sation techniques such as loop fusion [13] and automatic
parallelisation using the polyhedral model [8].

GPU Code Generation for Dynamic Languages. Be-
sides simple wrappers such as PyOpenCL and PyCUDA [14]
there exist more sophisticated GPU code generation sys-
tems. Numba [17] is a GPU code generator for Python that

54

DelayRepay: Delayed Execution for Kernel Fusion in Python DLS ’20, November 17, 2020, Virtual, USA

uses JIT compilation techniques, but users must be aware of
the underlying GPU programming model. Harlan-J [22] is
a JavaScript extension for data parallelism combined with
an OpenCL JIT compiler. As with Numba, Harlan-J requires
users to write specific parallel aware code for targeting the
GPU. Similar to Numba, Copperhead [7] is another tool for
accelerating Python code with GPUs. Copperhead requires
the programmer to write GPU kernels in a restricted Python
subset. AlPyNa [12], parallelises ordinary nested Python
loops onto GPUs via Numba. This requires programmers to
rewrite existing NumPy programs as loop-based Python.
Some higher level approaches have taken advantage of

the parallel semantics of operations performed over arrays.
Fumero et al. [10] describe an advanced GPU compilation
system for the R programming language that makes use
of the Graal virtual machine technology to generate GPU
kernels at runtime based on dynamically captured traces.
Also building on top of Graal, Tornado [9] provides GPU
capabilities for Java programs at runtime.

Improving Dynamic Language Native Extension Per-
formance. Although not aimed at GPUs, there has been
work on improving the performance of calling native code
from dynamic languages. SQPyte [6] improves performance
of calling native database code from a Python implementa-
tion through the use of an embedded JIT compiler. Grimmer
et al. [11] show significant improvement in Ruby native ex-
tension performance by combining a Ruby and C interpreter
that share a common IR. Weld NumPy [21] uses the approach
of a common runtime and intermediate representation to
optimise calling between different languages and libraries.

7 Conclusion and Future Work
We have presented DelayRepay, a drop-in replacement for
NumPy that implicitly accelerates Python code on GPUs.
We have shown that our kernel fusion techniques enable
DelayRepay to outperform our closest competitors, CuPy
and Bohrium, by about 60% and 130% on average respectively,
and by a maximum of 409% and 86% respectively. We have
achieved this while only requiring one trivial code change for
users of the original NumPy version, demonstrating that the
significant performance gains available onGPUs can bemade
available to scientific Python programmers, at essentially no
additional programming effort. We have shown that while
DelayRepay was built for CUDA, its design allows for other
backends to be plugged in.

There are many avenues of exploration and improvement.
For example, our approach of building a NumPy expression
tree coupled with dynamic information available at runtime
allows potential optimisations, such as dead code elimination,
to be made before generating the CUDA kernels. Similarly,
we believe it will be interesting to investigate dynamic sched-
ule ordering of kernels to exploit better locality properties.
We believe it is worth investigating how this approach might

improve NumPy performance on the CPU. Our lightweigth
AST approach should compare favourably with existing ap-
proaches such as Weld. Finally, by further developing our
analysis of the correlation between application properties
and achieved speed-up, we aim to develop simple dynamic
heuristics which can filter out cases where DelayRepay is
not beneficial. For example, a heuristic that would break up a
fused kernel when the number of input arguments is greater
than a threshold value could improve the performance of
the grayscott benchmark.

Acknowledgments
The authors would like to thank the reviewers for their
helpful feedback. We acknowledge the support of the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC), [NSERC RGPIN-2020-05889], the Canada CIFAR
AI Chairs Program, and the Defense Advanced Research
Projects Agency (DARPA) Software Defined Hardware (SDH)
program.

References
[1] Arash Ashari, Shirish Tatikonda, Matthias Boehm, Berthold Reinwald,

Keith Campbell, John Keenleyside, and P. Sadayappan. On optimizing
machine learning workloads via kernel fusion. In Albert Cohen and
David Grove, editors, Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2015, San
Francisco, CA, USA, February 7-11, 2015, pages 173–182. ACM, 2015.

[2] Christian Batory, Lengauer Don, Charles Consel, and Martin Odersky.
Domain-Specific Program Generation. Springer, 2004.

[3] Michael Bauer and Michael Garland. Legate NumPy: Accelerated
and distributed array computing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–23, 2019.

[4] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Le-
gion: Expressing locality and independence with logical regions. In
SC’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–11. IEEE, 2012.

[5] Geoffrey Belter, Elizabeth R. Jessup, Ian Karlin, and Jeremy G. Siek.
Automating the generation of composed linear algebra kernels. In Pro-
ceedings of the ACM/IEEE Conference on High Performance Computing,
SC 2009, November 14-20, 2009, Portland, Oregon, USA. ACM, 2009.

[6] Carl Friedrich Bolz, Darya Kurilova, and Laurence Tratt. Making an
Embedded DBMS JIT-friendly. In Shriram Krishnamurthi and Ben-
jamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming (ECOOP 2016), volume 56 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 4:1–4:24, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[7] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead:
compiling an embedded data parallel language. In Calin Cascaval
and Pen-Chung Yew, editors, Proceedings of the 16th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP
2011, San Antonio, TX, USA, February 12-16, 2011, pages 47–56. ACM,
2011.

[8] Paul Feautrier. Some efficient solutions to the affine scheduling prob-
lem. i. one-dimensional time. Int. J. Parallel Program., 21(5):313–347,
1992.

[9] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki,
James Clarkson, and Christos Kotselidis. Dynamic application recon-
figuration on heterogeneous hardware. In Proceedings of the 15th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

55

DLS ’20, November 17, 2020, Virtual, USA J. M. Morton, K. Kaszyk, L. Li, J. Sun, C. Dubach, M. Steuwer, M. Cole, and M. F. P. O’Boyle

Environments, VEE 2019, page 165–178, New York, NY, USA, 2019.
Association for Computing Machinery.

[10] Juan José Fumero, Michel Steuwer, Lukas Stadler, and Christophe
Dubach. Just-in-time GPU compilation for interpreted languages with
partial evaluation. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE 2017,
Xi’an, China, April 8-9, 2017, pages 60–73. ACM, 2017.

[11] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter
Mössenböck. Dynamically composing languages in a modular way:
supporting C extensions for dynamic languages. In Robert B. France,
Sudipto Ghosh, and Gary T. Leavens, editors, Proceedings of the 14th In-
ternational Conference on Modularity, MODULARITY 2015, Fort Collins,
CO, USA, March 16 - 19, 2015, pages 1–13. ACM, 2015.

[12] Dejice Jacob, Phil Trinder, and Jeremy Singer. Python programmers
have GPUs too: Automatic python loop parallelization with staged
dependence analysis. In Proceedings of the 15th ACM SIGPLAN Inter-
national Symposium on Dynamic Languages, DLS 2019, page 42–54,
New York, NY, USA, 2019. Association for Computing Machinery.

[13] Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism
and improving data locality via loop fusion and distribution. In Utpal
Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua, ed-
itors, Languages and Compilers for Parallel Computing, 6th International
Workshop, Portland, Oregon, USA, August 12-14, 1993, Proceedings, vol-
ume 768 of Lecture Notes in Computer Science, pages 301–320. Springer,
1993.

[14] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul
Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL: A Scripting-Based
Approach to GPU Run-Time Code Generation. Parallel Computing,
38(3):157–174, 2012.

[15] Mads RB Kristensen, Simon AF Lund, Troels Blum, Kenneth Skovhede,
and Brian Vinter. Bohrium: Unmodified NumPy code on CPU, GPU,
and cluster.

[16] Mads Ruben Burgdorff Kristensen, Simon Andreas Frimann Lund,
Troels Blum, and James Avery. Fusion of parallel array operations.
In Ayal Zaks, Bilha Mendelson, Lawrence Rauchwerger, and Wen-
mei W. Hwu, editors, Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation, PACT 2016, Haifa, Israel,
September 11-15, 2016, pages 71–85. ACM, 2016.

[17] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-
based python JIT compiler. In Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC, LLVM ’15, New York, NY,
USA, 2015. Association for Computing Machinery.

[18] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and
Ben Lippmeier. Optimising purely functional GPU programs. In Greg
Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013, pages 49–60. ACM, 2013.

[19] Wes McKinney. Data structures for statistical computing in python.
In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the

9th Python in Science Conference, pages 51 – 56, 2010.
[20] Royud Nishino and Shohei Hido Crissman Loomis. CuPy: A NumPy-

compatible library for NVIDIA GPU calculations. 31st Confernce on
Neural Information Processing Systems, page 151, 2017.

[21] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan,
Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia,
and Stanford InfoLab. Weld: A common runtime for high performance
data analytics. In Conference on Innovative Data Systems Research
(CIDR), page 45, 2017.

[22] Uday Pitambare, Arun Chauhan, and Saurabh Malviya. Just-in-time
Acceleration of JavaScript. Technical report, 2013.

[23] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange,
Fabio Luporini, Andrew T. T. Mcrae, Gheorghe-Teodor Bercea, Gra-
ham R. Markall, and Paul H. J. Kelly. Firedrake: Automating the finite
element method by composing abstractions. ACM Transactions on
Mathematical Software, 43(3), December 2016.

[24] Sven-Bodo Scholz. Single assignment C: efficient support for high-level
array operations in a functional setting. J. Funct. Program., 13(6):1005–
1059, 2003.

[25] Chun-Yu Shei, Adarsh Yoga, Madhav Ramesh, and Arun Chauhan.
MATLAB parallelization through scalarization. In 15th Workshop on
Interaction between Compilers and Computer Architectures, INTERACT
2011, San Antonio, Texas, USA, February 12, 2011, pages 44–53. IEEE
Computer Society, 2011.

[26] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. Delite: A com-
piler architecture for performance-oriented embedded domain-specific
languages. ACM Transactions on Embedded Computing Systems, 13(4s),
April 2014.

[27] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 2020.

[28] Guibin Wang, YiSong Lin, and Wei Yi. Kernel fusion: An effective
method for better power efficiency on multithreaded GPU. In 2010
IEEE/ACM Int’l Conference on Green Computing and Communications
& Int’l Conference on Cyber, Physical and Social Computing, pages
344–350. IEEE, 2010.

[29] Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar
Yalamanchili, and Srimat Chakradhar. Optimizing data warehousing
applications for gpus using kernel fusion/fission. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
& PhD Forum, pages 2433–2442. IEEE, 2012.

56

	Abstract
	1 Introduction
	2 Motivation
	2.1 GPU Execution with CuPy
	2.2 Lazy Fusion with Bohrium
	2.3 The Need for Fusion of Operations
	2.4 Overview

	3 Delayed Execution
	3.1 Numpy Basics
	3.2 Delayed Mechanism with NumPy
	3.3 Implicit Execution
	3.4 Example
	3.5 Fall-Back Mechanism

	4 Compiler-Based Fusion
	4.1 Operator Fusion
	4.2 CUDA Kernel Generation
	4.3 Generated Kernel Example
	4.4 Execution of CUDA kernels

	5 Evaluation
	5.1 Benchmarks
	5.2 Hardware and Software Platform
	5.3 Experimental Methodology
	5.4 Performance Results
	5.5 Analysis

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

