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Abstract—Halide and many similar projects have demon-
strated the great potential of domain specific optimizing com-
pilers. They enable programs to be expressed at a convenient
high-level, while generating high-performance code for parallel
architectures. As domains of interest expand towards deep
learning, probabilistic programming and beyond, it becomes
increasingly clear that it is unsustainable to redesign domain
specific compilers for each new domain. In addition, the rapid
growth of hardware architectures to optimize for poses great
challenges for designing these compilers.

In this paper, we show how to extend a unifying domain-
extensible compiler with domain-specific as well as hardware-
specific optimizations. The compiler operates on generic patterns
that have proven flexible enough to express a wide range of com-
putations. Optimizations are not hard-coded into the compiler but
are expressed as user-defined rewrite rules that are composed into
strategies controlling the optimization process. Crucially, both
computational patterns and optimization strategies are extensible
without modifying the core compiler implementation.

We demonstrate that this domain-extensible compiler design is
capable of expressing image processing pipelines and well-known
image processing optimizations. Our results on four mobile ARM
multi-core CPUs, often used for image processing tasks, show
that the code generated for the Harris operator outperforms the
image processing library OpenCV by up to 16× and achieves
performance close to - or even up to 1.4× better than - the
state-of-the-art image processing compiler Halide.

Index Terms—Code generation, Compilers, Performance, Im-
age Processing, Rise, Elevate

I. INTRODUCTION

Domain specific languages (DSLs) and their compil-

ers promise convenient programming combined with high-

performance. This is a proven success for domains ranging

from signal and image processing to deep learning and more.

Building domain specific compilers that generate high-

performance code has long been recognized as a highly

complex task. To address this, domain-extensible compiler

projects like Delite [1] and the more recent AnyDSL [2] aim

to simplify the development of DSLs. Delite provides a fixed

set of generic patterns that is used as the intermediate program

representation. Traditional heuristic driven optimization passes

are applied to lower the code. AnyDSL uses partial evaluation

to blend the lines between the compiler implementation and

library code, allowing compiler optimizations to be expressed

more easily.

The recent growth of specialized hardware architectures in-

troduces additional challenges for compiler designers. Relying

on traditional heuristics - like Delite - or forcing a complete

re-engineering of the optimized code - like AnyDSL - are not

sufficient solutions for easily targeting new hardware devices.

More flexibility is needed to explore different optimization

strategies, but also to allow precise control of compiler opti-

mizations in crucial cases.

The domain-specific compiler Halide [3] provides control

over optimization decisions by separating a computation spec-

ification from its schedule that specifies how the computation

should be optimized. This fine grained control allows steering

the compiler to generate highly efficient code that would

have been hard to reach with traditional compiler heuristics.

Unfortunately, Halide only exposes a fixed set of built in

optimizations via its scheduling API. This severely limits

Halide’s ability to adapt to new hardware architectures. For

a domain-extensible compiler this would also prevent the

addition of domain-specific optimizations.

To overcome the challenges of building a domain-extensible

compiler, the LIFT project [4, 5] has proposed an extensible

high-level intermediate representation (IR) made up of compu-

tational patterns. The LIFT compiler then automatically applies

semantics-preserving rewrite rules to optimize the high-level

program. The pattern-based IR has shown to provide portable

performance across different GPU architectures [6] and to be

extensible across domains with extensions for stencil compu-

tations [7] used in HPC, deep learning, and image processing.

Unfortunately, the control of optimizations in LIFT is limited

due to its automated search for best optimizations, which is

not always desirable as it may result in poor performance

or be too time consuming. The LIFT implementation is also

missing optimizations that are important for image processing

pipelines, leading to poor performance compared to Halide as

shown in fig. 1.
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Fig. 1: The existing domain-extensible compiler LIFT performs poorly com-
pared to Halide on image processing pipelines. Extended with additional op-
timizations, described as compositions of rewrite rules, our domain-extensible
compiler for RISE outperforms Halide by 1.3× on Cortex A53.
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To overcome these shortcomings we build upon recent

work [8] that complements a LIFT-like high-level IR (called

RISE) with a language for defining optimization strategies

(called ELEVATE) outside of the compiler in an extensible

and composable way. ELEVATE allows describing complex

compiler optimizations such as tiling, as well as complete

program schedules, as compositions of rewrite rules.

In this paper, we demonstrate the advantages of domain-

extensible compilers through a case-study where we optimize

a standard image processing pipeline: the Harris operator.

Without needing to re-engineer a domain-specific optimizing

compiler, we outperform Halide on mobile ARM CPUs (see

fig. 1) by expressing optimizations outside of the compiler as

compositions of rewrite rules.

To summarize, this paper makes the following contributions:

• We demonstrate that the generic patterns of RISE are ca-

pable of representing typical image processing pipelines

such as the Harris operator (section III);

• We show how to encode well-known image process-

ing optimizations as compositions of rewrite rules in

ELEVATE, the language used to describe optimization

strategies (section IV);

• We experimentally evaluate our approach, demonstrating

that our domain-extensible compiler is capable of gener-

ating code that outperforms OpenCV by up to 16× and

is competitive to - or up to 1.4× better than - the state-

of-the-art image processing compiler Halide (section V).

II. A DOMAIN-EXTENSIBLE COMPILER DESIGN

To address the lack of flexibility of domain-specific com-

pilers, and to reuse compiler infrastructure across DSLs, we

advocate for a compiler design that does not rely on a fixed set

of computational abstractions and optimizations. Instead, we

aim to support a growing set of abstractions and optimizations;

enabling to continuously target new hardware architectures

and new application domains. This is why we follow ideas

from LIFT [4] and more recently RISE and ELEVATE [8]. We

combine a high-level pattern-based IR with optimizations that

are expressed as compositions of rewrite rules. This approach

has been successfully applied to linear algebra and extended

to express individual stencil computations [7]. In this paper,

we look at more complex image processing pipelines.

Fig. 2 illustrates the overall design. High-level programs

focus on the description of what is computed. They are written

in RISE, a LIFT-like functional IR, using an extensible and

reusable set of patterns. Optimization strategies describe

how to optimize the computation. They are written in the

ELEVATE language, and orchestrate an extensible and reusable

set of semantics-preserving rewrite rules. All optimization

decisions are explicitly encoded by applying rewrite rules

on the high-level RISE program, which leads to a low-level

program describing how the computation is performed. From

there, code is generated using a formal translation derived

from [9] to translate low-level functional RISE programs to

imperative code such as C or OpenCL.

As pictured on the right of fig. 2, this compiler design

facilitates extension. Extending the compiler for a specific

domain involves defining new macros, patterns, strategies and

rewrite rules. Macros are used to build abstractions that expand

to generic patterns, such as stencil2d. Algorithmic patterns

are introduced, such as slide which creates a sliding win-

dow; enabling stencil computations. Optimization strategies

are introduced, for example to separateConvolutions using an

underlying rewrite rule encoding the separability of a con-

volution kernel (separateConvKernel). Extending the compiler

for a specific target uses the same mechanisms. Low-level

implementation patterns are introduced, such as mapGlobal
that performs the high-level map pattern in parallel across all

global threads. Each low-level pattern comes with a small code

snippet extending the code generator to explain how low-level

code (e.g. OpenCL code) is generated. Optimization strategies

are introduced, for example to introduce parallelism or the use

of circularBuffers across pipeline Stages.

Although extensions are critical to achieve high perfor-

mance, we strive to minimize extensions and to maximize

generic infrastructure reuse to simplify compiler development.

Most of the patterns and rewrite rules used this paper are

generic or widely reusable.

A. Optimizing High-Level Programs via Rewriting

Our domain-extensible compiler takes a high-level RISE

program and an ELEVATE optimization strategy as input (see

top-left of fig. 2). This high-level program describes what to

compute, rather than how to compute. For example, the dot

product is represented as the high-level RISE program dot:

def dot(a, b) = zip(a, b) ⊲ map(×) ⊲ reduce(+, 0)

The zip(a,b) primitive combines two vectors a and b whose

elements are multiplied pairwise using map(×) before they are

summed using reduce(+, 0). The triangle symbol (⊲) indicates

the sequencing of operations, x ⊲ y reads: do x, then y.

This high-level program does not encode how it is executed,

for example we could choose to parallelize the map primitive,

store the intermediate result, and then perform a sequential

reduce. Alternatively, we could choose to avoid storing an

intermediate result by fusing the map and reduce patterns and

perform a single sequential reduction. Obviously, many more

options are possible, and such choices are encoded explicitly

as optimization strategies in ELEVATE.

For the fused version avoiding the intermediate results, we

write a rewrite rule. This rule states that mapping a function

f over an array before reducing the array is equivalent to

reducing the array while applying f on the go. Note that

the reduction must be performed sequentially because the

reduction operator is not commutative anymore.

rule reduceMapFusion = map(f) ⊲ reduce(g, init)
7→ reduceSeq(fun (acc, x). g(acc, f(x)), init)

Using this rewrite rule we define an optimization strategy that

explains how the rule is applied to the program:

strategy lowerDot = applyOnce(reduceMapFusion)
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Fig. 2: A Domain-Extensible Compiler Design: Computations are expressed as compositions of extensible patterns in the RISE IR; Optimizations are expressed
as compositions of extensible rewrite rules in the ELEVATE strategy language.

This strategy performs the rewrite by applying it to map(×) ⊲

reduce(+,0) in the high-level dot product program, replacing

it with the right hand side of the rewrite and producing the

following low-level program:

def dotSeq(a, b) = zip(a, b)
⊲ reduceSeq(fun (acc, x). acc + fst(x) × snd(x), 0)

Generating the equivalent C or OpenCL code from this repre-

sentation is conceptually straightforward, but has some tech-

nical challenges that have been explored in prior work [5, 9].

The C function dotSeqC is generated from dotSeq implementing

the dot product with a sequential reduction loop as expected:

void dotSeqC(float* output, int n, float* a, float* b) {
float acc;
acc = 0.0f;
for (int i = 0; i < n; i++) {

acc = acc + (a[i] * b[i]); }
output[0] = acc; }

B. High-Level and Low-Level Programs Represented in RISE

RISE is a functional IR with anonymous functions (written

as fun x. b), familiar function application (written as f(x)),

identifiers and literals. The language is embedded in Scala,

which allows meta-programming and the definition of macros

(Scala code that will generate RISE IR). RISE also defines a

set of high-level patterns to describe computations as shown in

fig. 3 together with their types. These high-level computational

patterns include applying a function to each element of an

array (map) or reducing all elements of an array to a single

value given a binary reduction function (reduce). There are

also patterns such as split, join, or transpose for reshaping

multi-dimensional array data in various ways. We write s → t

for a function type with input of type s and output of type

t, [n] t for an array type with n elements of type t, (s × t)
for a pair type with component types s and t. In RISE, the

type system ensures that function types cannot be stored in

memory, only data types.

+ | × : t → t → t

map : (s → t) → [n] s → [n] t
reduce : (t → t → t) → t → [n] t → t

split : (n : nat) → [nm] t → [m] [n] t
join : [n] [m] t → [nm] t
transpose : [n] [m] t → [m] [n] t
slide : (sz sp : nat) → [sp× n+ sz − sp] t → [n] [sz] t
zip : [n] s → [n] t → [n] (s× t)
fst : (s× t) → s

snd : (s× t) → t

Fig. 3: RISE high-level patterns and their type

mapSeq : (s → t) → [n] s → [n] t
reduceSeq : (s → t → s) → s → [n] t → s

mapGlobal : (s → t) → [n] s → [n] t
toMem : (a : addr) → t → t

asVector : (m : nat) → [nm] t → [n] 〈m〉 t
asScalar : [n] 〈m〉 t → [nm] t
vectorFromScalar : t → 〈m〉 t

Fig. 4: RISE low-level patterns and their type (not exhaustive)

The RISE compiler rewrites the high-level program into a

low-level program that describes how the result is computed,

encoding implementation decisions explicitly.

RISE’s low-level patterns (fig. 4) indicate specific imple-

mentation decisions. For example, mapSeq and reduceSeq re-

spectively implement map and reduce with sequential loops.

Some low-level patterns are specific to the target program-

ming model (such as OpenCL) or hardware architecture (such

as SIMD vector support). For OpenCL, mapGlobal introduces

parallelism by parallelizing across global threads. The toMem
primitive is used to explicitly encode storing an expression

in the given address space in memory. Other patterns enable

SIMD vectorization (e.g. asVector). A vector type with m

elements of type t is written as 〈m〉 t.
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Fig. 5: Harris corner detection computation flow, illustrated with an example image from the Halide repository.

C. Optimization Strategies Expressed in ELEVATE

In addition to a high-level program describing the computa-

tions to be performed, our compiler also takes an optimization

strategy as input as shown in the top left of fig. 2. Optimization

strategies are written in the ELEVATE strategy language [8] and

control the rewriting process by precisely determining how the

given high-level program is optimized.

In ELEVATE, optimization strategies are encoded as func-

tions transforming RISE programs. Such a strategy function

might succeed and return the transformed program, or alter-

natively fail. Strategies are written as composition of other

strategies and rewrite rules that directly encode the transfor-

mation of the program.

Strategy combinators help to write complex strategies by

composition. The sequential (;) combinator composes two

strategies by performing the second one on the transformed

program from the first strategy. The <+ combinator (called left

choice) composes two strategies by performing the second if

the first strategy fails. The try combinator tries to perform a

given strategy, and does nothing if the strategy fails. repeat
performs a strategy repeatedly until it fails.

Traversals control the location at which strategies perform

their transformations. We have already seen applyOnce that tra-

verses the program AST using a depth-first top-down traversal

and performs the given strategy at the first possible location.

When writing rewrite rules and strategies, it helps to know

that the program is in a particular syntactic form. To ensure

that programs satisfy this form, we use the normalize traversal

to perform a strategy to all possible program locations. After

performing normalize(s), we know that s can no longer be

applied to any location in the transformed program.

D. Summary

We advocate a compiler design where both computational

patterns and optimizations are easily extensible. Computations

are expressed in the RISE IR using computational patterns.

Optimizations are expressed in the ELEVATE strategy language

as compositions of rewrite rules. Next we investigate how to

represent image processing pipelines in the RISE language

before later investigating how to encode important image pro-

cessing optimizations. We focus on the Harris corner detection

and ARM multi-core CPUs as a case-study.

III. REPRESENTING IMAGE PROCESSING PIPELINES

IN RISE

The Harris corner (and edge) detector [10] is a well estab-

lished image processing pipeline that we use as a case study in

this paper. Many algorithmic variations exist, we use the one

found in the Halide repository as our reference. This variant

does not include padding for the stencil borders, and instead

the output image is slightly smaller than the input image.

Fig. 5 shows the Harris operator. Given an image on the

left, point-to-point operators (grayscale, multiplications ×,

coarsity) and 3× 3 convolutions (sobel operators Sx and Sy ,

sums +) are combined to detect corners and edges highlighted

in the output on the right. As a composition of point wise and

stencil operators, the Harris detector is more complex than its

individual parts, and exposes more optimization opportunities.

The optimizations that we study on the Harris detector are

generalizable and applicable to other such compositions.

Representing the point-wise operators of the Harris corner

detection in the generic high-level RISE intermediate language

does not require any image-specific patterns. They are rep-

resented using a composition of the map pattern (map2d) and

simple array transformations, as shown in listing 1. Note that

we use def as syntactic sugar for functional let expressions

which will be visible to optimization strategies.

Listing 1: High-level point-wise operators

1 def map2d(f: s → t): [n] [m] s → [n] [m] t = map(map(f))
2 def zip2d(a: [n] [m] s, b: [n] [m] t): [n] [m] (s × t) =
3 zip(a, b) ⊲ map(fun p. zip(fst(p), snd(p)))
4

5 def grayscale(RGB: [3] [n] [m] f32): [n] [m] f32 =
6 RGB ⊲ transpose ⊲ map(transpose)
7 ⊲ map2d(dot(

[

0.299 0.587 0.114
]

))
8

9 def ×2D(a, b: [n] [m] f32): [n] [m] f32 =
10 zip2d(a, b) ⊲ map2d(×)
11

12 def coarsity(
13 Sxx, Sxy, Syy: [n] [m] f32, κ: f32

14 ): [n] [m] f32 =
15 zip2d(Sxx, zip2d(Sxy, Syy)) ⊲ map2d(fun p.
16 def (sxx, (sxy, syy)) = p
17 def det = sxx × syy - sxy × sxy

18 def trace = sxx + syy

19 det - κ × trace × trace)
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Listing 2: High-level stencil operators

1 def slide2d(nsz: nat, nsp: nat, msz: nat, msp: nat) =
2 map(slide(nsz, nsp)) ⊲ slide(msz, msp)
3 ⊲ map(transpose)
4

5 def stencil2d(f: [N ] [M ] s → t):
6 [n + N − 1] [m + M − 1] s → [n] [m] t =
7 slide2d(N, 1, M, 1) ⊲ map2d(f)
8

9 def conv3x3(weights: [3] [3] f32):
10 [n + 2] [m + 2] f32 → [n] [m] f32 =
11 stencil2d(3, 3, fun w. dot(join(weights), join(w)))
12

13 def Sx = conv3x3(
[

−1 0 1

−2 0 2

−1 0 1

]

×
1

12
)

14

15 def Sy = conv3x3(
[

−1 −2 −1

0 0 0

1 2 1

]

×
1

12
)

16

17 def +3×3 = stencil2d(3, 3, fun w. reduce(+, 0 join(w)))

Listing 3: High-level Harris detector

1 def harris(RGB: [3] [n + 4] [m + 4] f32): [n] [m] f32 =
2 def I = grayscale(RGB)
3 def Ix = Sx(I)
4 def Iy = Sy(I)
5 def Ixx = ×2D(Ix, Ix)
6 def Ixy = ×2D(Ix, Iy)
7 def Iyy = ×2D(Iy, Iy)
8 def Sxx = +3×3(Ixx)
9 def Sxy = +3×3(Ixy)

10 def Syy = +3×3(Iyy)
11 coarsity(Sxx, Sxy, Syy, 0.04)

For the stencil operators we use the slide pattern, as

introduced in LIFT in [7]. It creates a one-dimensional sliding

window with a given size and step and is composed to

create two-dimensional sliding windows with slide2d. Two-

dimensional stencil operators are then expressed by first cre-

ating a sliding window with slide2d and then performing a

local computation over the obtained neighborhood using map2d
as shown in listing 2. Higher level abstractions are built on top,

such as conv3x3 creating a 3× 3 convolution given weights.

Putting everything together, listing 3 shows the entire Harris

corner detection expressed by composition of the previously

defined building blocks. Note that the final RISE program only

contains generic high-level patterns and basic language con-

structs - no image-specific internal representation is required.

All abstractions such as map2d or slide2d are de-sugared into

the patterns from fig. 3.

IV. OPTIMIZING IMAGE PROCESSING PIPELINES

WITH ELEVATE

The LIFT project has been extended to express stencil

computations and overlapped tiling [7], but it is missing crucial

optimizations for image processing pipelines [11] that are

supported by Halide. This leads to poor performance as seen in

fig. 1. In this section, we use an optimized Halide schedule of

the Harris operator as reference to demonstrate how ELEVATE

is used to perform equivalent and additional optimizations by

composing rewrites to transform RISE programs.

Listing 4: Optimized schedule for the Harris corner detection from the Halide
GitHub repository

const int vec = natural_vector_size<float>();
output.split(y, y, yi, 32).parallel(y)

.vectorize(x, vec);
gray.store_at(output, y).compute_at(output, yi)
.vectorize(x, vec);

Ix.store_at(output, y).compute_at(output, yi)
.vectorize(x, vec);

Iy.store_at(output, y).compute_at(output, yi)
.vectorize(x, vec);

Ix.compute_with(Iy, x);

Listing 4 shows the Halide schedule describing the opti-

mizations applied to the Harris operator. The schedule applies

parallelism and vectorization as key optimizations as well

as describing how the stages interact by storing memory in

intermediate buffers. Halide makes some implicit optimization

decisions appropriate for image processing pipelines, such as

using circular buffers.

Figure 6 visualizes the computation with these optimizations

applied. The upper part of fig. 6 shows the input image on

the left, where the three color channel images are combined

in the grayscale computation. Grayscale lines are stored in

a temporary buffer to be processed by the sobel operators

(Sx and Sy). The resulting buffers are then multiplied (×),

summed (+) and coarsity is applied to compute the final

output. Operator fusion is applied to the computational flow

(fig. 5) so that only two intermediate buffers are used. Multi-

threading is exploited by parallelizing the y dimension and

computing chunks of output lines in parallel (see the thread0

and thread1 annotations on the right). Circular buffers are used

for the intermediate results. Each thread stores three lines in

the buffer I . These lines are used to compute two lines and

store them in buffers Ix and Iy . Similarly, three lines of both

Ix and Iy are used to compute one line of the output.

The lower part of figure 6 shows two different ways to

optimize the computations of individual image lines. The

cbuf version is what Halide does: it uses vectorization to

process lines one vector at a time. The cbuf+rrot version

below is currently not possible with Halide: it also uses

vectorization but further incorporates convolution separation,

enabling register rotation as described in [11]. This is shown

in the center and right of the bottom row: The two-dimensional

reductions are decomposed in a vertical reduction followed by

a horizontal reduction. Temporary vector registers are rotated

to hold the last vertical reductions that are used for a horizontal

reduction.

In the following subsections, we will first show how to repli-

cate the optimizations described by the Halide schedule but as

extensible ELEVATE strategies. This already goes beyond the

capabilities of the existing LIFT compiler. Then, we will show

how to go beyond the optimization that Halide performs by

incorporating the additional optimizations convolution separa-

tion and register rotation.
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Fig. 6: Overview of the optimizations applied on the Harris corner detector.

A. Reproducing the Halide Optimizations with ELEVATE

Listing 5 shows the ELEVATE optimization strategy that

reproduces the reference Halide schedule through a compo-

sition of smaller strategies – themselves composed of rewrite

rules. In the following, we are discussing how to express the

individual optimization strategies in ELEVATE one-by-one.

Operator Fusion: The reference Halide schedule speci-

fies which temporary values should be stored in memory using

store_at directives. Otherwise operators are fused by default,

storing temporary results in registers instead of memory. This

transformation is more complex than loop fusion, which is

why LIFT fails to apply it using its simple map-fusion rules.

In, ELEVATE we define the fuseOperators strategy transforming

the Harris program (listing 3) into a pipeline over image lines:

map(grayLine) ⊲ slide(3,1) ⊲

map(sobelLine) ⊲ slide(3,1) ⊲ map(coarsityLine)

Listing 5: ELEVATE optimization strategy using circular buffering for the
Harris operator

1 strategy cbufVersion =
2 fuseOperators;
3 splitPipeline(32); parallel;
4 vectorizeReductions(vec);
5 harrisIxWithIy;
6 circularBufferStages;
7 sequentialLines;
8 usePrivateMemory; unrollReductions

Where grayLine is a function computing a grayscale line,

sobelLine a function computing a line of sobel convolutions,

and coarsityLine a function computing a line of output (with

multiplications, sums and coarsity fused) as shown in fig. 6.

Multi-threading: To take advantage of thread-level

parallelism, the Halide schedule splits the output into

chunks of 32 lines that are processed in parallel:

output.split(y, y, yi, 32).parallel(y). The ELEVATE strat-

egy splitPipeline(32);parallel has the same effect, producing

a program that slides over p+ 4 lines of input with step p to

compute chunks of size p in parallel:

slide(p+4, p) ⊲ mapGlobal(
map(grayLine) ⊲ slide(3,1) ⊲

map(sobelLine) ⊲ slide(3,1) ⊲

map(coarsityLine)
) ⊲ join

Parallelism is achieved by using the low-level mapGlobal prim-

itive that applies the nested function in parallel across global

threads. The strategy itself starts by splitting the last map in the

pipeline with the splitJoin rewrite rule. Then, it propagates

this split to the rest of the pipeline by normalizing it with

various movement rules. Finally, all possible map fusions are

applied in the pipeline. All the involved rules are in listing 6.

Vectorization: Vectorization uses SIMD parallelism (Sin-

gle Instruction, Multiple Data) through special instructions

such as the NEON instructions on ARM processors. In the

Halide schedule, this optimization is enabled by multiple

.vectorize(x, vec) directives.
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1 aligned load 2 aligned loads
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a b c a v

float4 a = load4(ptr)
float4 b = load4(ptr + 1)
float4 c = load4(ptr + 2)

float4 a = load4(ptr)
float4 v = load4(ptr + 4)
float4 b = (a.s123, v.s0)
float4 c = (a.s23, v.s01)

0 1 2 3

1 2 3 4

2 3 4 5

stencil pattern

0 1 2 3 4 5
w1

float4 a =

w2 w3 w4

float4 b =

float4 c =
w1 w2 w3 w4 2 unaligned loads

naive implementation optimized implementation

2 shuffles

Fig. 7: Example of memory loads for a vectorized 1D stencil of size 3. The code is written in pseudo OpenCL syntax.

Listing 6: Rules involved in the multi-threading optimization

1 rule splitJoin(p: nat) =
2 map(f) 7→ split(p) ⊲ map(map(f)) ⊲ join
3

4 rule slideAfterSplit =
5 slide(n, m) ⊲ split(p)
6 7→ slide(p+n-m, p) ⊲ map(slide(n, m))
7

8 rule slideBeforeMap =
9 map(f) ⊲ slide(n, m) 7→ slide(n, m) ⊲ map(map(f))

10

11 rule slideBeforeSlide =
12 slide(n, 1) ⊲ slide(m, k)
13 7→ slide(m+n-1, k) ⊲ map(slide(n, 1))
14

15 rule mapFusion = map(f) ⊲ map(h) 7→ map(f ⊲ h)
16

17 rule useMapGlobal = map(f) 7→ mapGlobal(f)

Listing 7: Strategy and rules involved in vectorization

1 strategy vectorize(v: nat) =
2 startVectorization(v);
3 normalize(
4 vectorizeBeforeMap <+
5 vectorizeBeforeMapReduce);
6

7 rule startVectorization(v: nat) =
8 a: [n × v] s 7→ a ⊲ asVector(v) ⊲ asScalar
9

10 rule vectorizeBeforeMap =
11 map(f) ⊲ asVector(v) 7→ asVector(v) ⊲ map(mapVec(f))
12

13 rule vectorizeBeforeMapReduce =
14 map(reduce(f, init)) ⊲ asVector(v)
15 7→ a ⊲ transpose ⊲ map(asVector(v)) ⊲ transpose
16 ⊲ map(reduce(mapVec(f), vectorFromScalar(init)))

The ELEVATE strategy vectorizeReductions(vec) has a simi-

lar effect, vectorizing all reductions of a program. To illustrate

how the strategy works, we consider a sub-program found in

the Harris operator:

map(reduce(+, 0)) ⊲ map(f)

It is vectorized by interpreting the input as a two dimensional

array of vectors using asVector and computing on vectorized

data before going back to scalars using asScalar:

transpose ⊲ map(asVector(v)) ⊲ transpose
⊲ map(reduce(mapVec(+), vectorFromScalar(0)))
⊲ map(mapVec(f)) ⊲ asScalar

Where the mapVec pattern vectorizes a scalar function - this

is currently supported for functions that use basic operations

such as addition and multiplication.

This program transformation can be defined with an EL-

EVATE strategy composing simpler rewrite rules as shown in

listing 7. In practice, arrays are often not multiples of the

vector width. There are different ways to handle this, we

simply round inputs, outputs and temporaries up to a multiple

of the vector width - an option that Halide also provides.

When vectorizing stencils the computations are performed

on the wi components of three vector values as shown in the

left of fig. 7. The inputs of vectorized stencils are not aligned

in memory and can be loaded in different ways. The naive

implementation performs three loads, two of which are not

aligned at a vector boundary. The optimized implementation,

used by RISE, only performs two vector loads followed by

vector shuffle instructions.

Circular Buffering: Circular buffers leverage both the

spatial locality of stencils and the temporal locality of sequen-

tial execution: only the last m intermediate results need to be

stored in memory, and modulo indexing is used: T [i] can be

stored in M [i mod m]. With transparently managed caches,

this reduces memory usage and delays cache overflow. In the

Halide schedule, .store_at(output, y).compute_at(output, yi)
implicitly triggers the use of circular buffers for the introduced

temporary. When combined with the previous multi-threading

optimization, a separate set of circular buffers is used inside

each parallel chunk – where execution is still sequential – as

shown in fig. 6. The ELEVATE strategy circularBufferStages
has the same effect, producing a program with the shape:

slide(p+4, p) ⊲ mapGlobal(
circularBuffer(global, 3, grayLine) ⊲

circularBuffer(global, 3, sobelLine) ⊲

mapSeq(coarsityLine)
) ⊲ join

The circularBuffer pattern is a new low-level pattern that

we added to RISE. Given an input array, the circularBuffer
pattern returns an array of sliding windows similar to the slide
pattern, but the last m values have been loaded into the circular

buffer. It also takes as arguments an OpenCL address space,

the size m of the buffer, and a function used to load values

into the buffer as arguments. The mapSeq pattern is used to read

sequentially from the circular buffer. The circularBufferStages
strategy itself works by rewriting slide into the circularBuffer
pattern, fusing circularBuffer and map, and introducing the

mapSeq pattern using the rewrites rules of listing 8.

Additional Optimizations: A couple of additional

optimizations are encoded as ELEVATE strategies. The

harrisIxWithIy strategy emulates the Ix.compute_with(Iy, x)
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Listing 8: Rewrite rules involved in circular buffering

1 rule useCBuffer(a: addr) =
2 slide(m, 1) 7→ circularBuffer(a, m, fun x. x)
3

4 rule cBufferLoadFusion =
5 circularBuffer(a, m, load, map(f, in))
6 7→ circularBuffer(a, m, fun x. load (f x), in)
7

8 rule useMapSeq = map(f) 7→ mapSeq(f)

schedule directive from Halide, fusing the loops com-

puting these two intermediate results. The sequentialLines
strategy makes individual line computations sequential,

usePrivateMemory stores various temporaries in private memory,

and unrollReductions unrolls reduction loops. These transfor-

mations are not mentioned in the Halide schedule, the two first

ones happen implicitly, while reductions have already been

unrolled in the algorithm definition. All these optimizations

are already well supported as rewrites by LIFT but have not

been encoded as ELEVATE strategies.

B. Expressing Optimizations beyond Halide with ELEVATE

Listing 9 shows an ELEVATE strategy re-using the opti-

mizations from section IV-A and additionally incorporating

convolution separation and register rotation (highlighted in

the listing). These two optimizations are orthogonal from

multi-threading and circular buffering as they operate on a

different dimension. Separating the convolution is necessary

to enable register rotation, and is not expressible in Halide

without manually changing the algorithm. Register rotation is

not implemented in Halide, although it is seen as a worth-

while optimization (https://github.com/halide/Halide/issues/2905). Im-

plementing register rotation in Halide would require extending

the compiler as well as exposing the optimization via the

scheduling API, resulting in significant work. We discuss here

how this optimization is expressed elegantly outside of the

compiler as an ELEVATE strategy.
Convolution Separation: The two-dimensional sobel and

sum convolutions in the Harris detector have an important
property: they are separable into two one-dimensional convo-
lutions following the observation that the convolution kernel
matrix is separable into a column and row vector:
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Listing 9: ELEVATE strategy using circular buffering and register rotation.
Changes compared to listing 5 are highlighted.

1 strategy cbuf+rrotVersion =
2 fuseOperators;
3 splitPipeline(32); parallel;
4 separateConvolutions;
5 vectorizeReductions(vec);
6 harrisIxWithIy;
7 circularBufferStages;
8 rotateValuesAndConsumeLines;
9 usePrivateMemory; unrollReductions

Listing 10: Strategy and rules to apply and push convolution separation
through a line computation

1 rule separateConvKernel(weights2d, wV, wH) =
2 dot(join(weights2d), join(nbh))
3 7→ nbh ⊲ transpose ⊲ map(dot(wV)) ⊲ dot(wH)
4

5 strategy pushSeparation(separate) =
6 applyOnce(separate); reducedFissionedForm;
7 applyOnce(mapSlideAfterTranspose);
8 reducedFusedForm; reducedFissionedForm;
9 normalize(slideAfterMapMapF)

10

11 rule mapSlideAfterTranspose =
12 map(slide(n, m)) ⊲ transpose
13 7→ transpose ⊲ slide(n, m) ⊲ map(transpose)
14

15 rule slideAfterMapMapF =
16 slide(n, m) ⊲ map(map(f)) 7→ map(f) ⊲ slide(n, m)

This decomposition is used to reduce both memory accesses

and arithmetic complexity, but is not possible for arbitrary

convolutions as it depends on the weights involved. With EL-

EVATE, such a domain- or even program-specific optimization

is easily definable outside of the compiler.

To separate a convolution such as the sobel convolution (S)

we start by takeing a one-dimensional stencil neighborhood

(nbhV) and using slide and transpose to create the 2D neigh-

borhood (nbh2d) before performing a dot product between the

2D weights and the neighborhood:

nbhV ⊲ map(slide(3,1)) ⊲ transpose ⊲ map(fun nbh2d.
dot(join(weights2d), join(nbh2d)) )

The 2D weights are separated into vertical weights (weightsV
) that are used to perform a 1D convolution and horizontal

weights (weightsH) that are used in a second 1D convolution:

nbhV ⊲ transpose ⊲ map(dot(weightsV))
⊲ slide(3,1) ⊲ map(dot(weightsH))

The strategy pushSeparation(separateConvKernel(weights2d,
weightsV, weightsH)) shown in listing 10 orchestrates this

transformation by composing simpler rewrite rules. The

domain-specific rewrite rule separateConvKernel encodes the

decomposition of the convolution kernel as a dot product

decomposition. It needs to be given the separated weights

explicitly. A similar rule could also encode a horizontal-

vertical decomposition. To separate the entire convolution,

we have to “push” the dot product decomposition across the

surrounding dimensions. A sequence of generic rules is used

to implement the pushSeparation strategy that achieves this.

separateConvolutions in listing 9 uses these components to

separate the sobel and sum convolutions of the Harris operator.

Register Rotation: Like circular buffering, register rota-

tion leverages spatial locality of stencils and temporal locality

of sequential execution. Instead of using circular indexing, reg-

ister rotation puts temporary results into registers and rotates

them between computation iterations. In the bottom of fig. 6,

convolution separation is combined with register rotation and

vectorization: vectors of computed vertical reductions are

rotated while computing vectors of horizontal reductions.
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Listing 11: Strategy and rules involved in register rotation

1 strategy rotateValuesAndConsume =
2 applyOnce(useRotateValues(private));
3 applyOnce(useMapSeq)
4

5 rule useRotateValues(a: addr) =
6 slide(m, 1) 7→ rotateValues(a, m, fun x. x)

Starting from a separated convolution resulting from the

separateConvolutions optimization discussed above:

transpose ⊲ map(dot(wV)) ⊲ slide(3,1) ⊲ map(dot(wH))

we introduce a set of rotating registers to store the sliding

window, replacing the second slide pattern. As the registers

rotate one register at a time we must use mapSeq:

transpose ⊲ map(dot(wV)) ⊲ rotateValues(private, 3)
⊲ mapSeq(dot(wH))

To express register rotation, RISE has been extended with

the rotateValues low-level pattern:

rotateValues: (a : addr) → (m : nat) → [n + m − 1] t → [n] [m] t

Given an input array, the rotateValues pattern returns an

array of sliding windows: the last m values that have been

stored in registers. Values are rotated while the array is read

sequentially. The underlying register allocation is performed

by the OpenCL compiler, thus this pattern alone does not

guarantee the use of registers but we have observed the

expected behaviour and good performance with this design.

The ELEVATE strategy rotateValuesAndConsume shown in list-

ing 11 orchestrates this program transformation by composing

simpler rewrite rules. A similar strategy is used in listing 9 to

apply this optimization to the Harris operator.

C. Summary

In this section we have discussed how well-known image

processing pipeline optimizations that were not implemented

in the LIFT compiler are expressed in a composable and

extensible way as ELEVATE optimization strategies. As well

as expressing optimizations already supported by Halide, we

expressed additional optimizations. In the next section, we will

investigate whether we truly achieve performance competitive

with the Halide reference, and what are the benefit of the

additional optimizations we expressed.

V. EXPERIMENTAL EVALUATION

In this section we report a systematic runtime performance

comparison between the RISE compiler, the Halide compiler,

the LIFT compiler, and the OpenCV image processing library.

A. Experimental Setup

Experiments are conducted on two computers with ARM

big.LITTLE configuration as these mobile CPUs are often

used in image processing applications. We use an Odroid XU4

board with a 4-core Cortex A7 and a 4-core Cortex A15 as

well as an Odroid N2 board with a 2-core Cortex A53 and a

4-core Cortex A73.

During benchmarks, we set the frequencies to 1.5Ghz for

the XU4, and 1.8Ghz for the N2. Our compiler implemen-

tation generates OpenCL kernels that are executed using the

POCL [12] open source implementation of OpenCL that is

built on top of LLVM. We used POCL 1.3 with LLVM 8 on

the XU4 and POCL 1.5 with LLVM 10 on the N2.

The OpenCL kernels generated with RISE are compared

against OpenCV, the OpenCL kernels generated with the

LIFT implementation from [7], and the binaries generated

by Halide (commit c2b6da2 https://tinyurl.com/rr7awsr). We use

OpenCV 4.3 with NEON vector support enabled. For RISE we

use the optimizations discussed in section IV implemented as

ELEVATE strategies to optimize the Harris corner detection.

For Halide we use the reference optimized schedule from

listing 4. Neither the RISE-generated OpenCL code nor the

Halide schedule is specialized for each individual processor,

but the final assembly will be respectively specialized by the

OpenCL implementation and the Halide compiler.

We report the median runtime of 30 executions, which we

found gives reasonably stable results. To measure the runtime

of the OpenCL kernels, we use the OpenCL profiling API.

For Halide we use C++’s std::chrono clocks as it is done with

other benchmarks in the Halide repository.

Two input images are used, one with a resolution of 1536×
2560 pixels, and one of 4256 × 2832 pixels. The first one is

taken from the Halide repository, and was shown in fig. 5.

While benchmarking, we also verify that the outputs of the

different Harris operator implementations are consistent by

computing the Mean-Squared Error and PSNR (Peak Signal-

to-Noise Ratio) with the reference output from Halide. The

recorded PSNR is always above 170 decibels. This high value

indicates a very strong similarity.

B. Performance Results

Figure 8 shows the measured runtime performances. All

three compilers, LIFT, RISE and Halide, outperform the

OpenCV baseline on all processors, although OpenCV de-

scribes itself as a highly optimized library. This highlights the

performance benefits brought by whole-program optimizing

compilers exploiting the semantics of high-level abstractions.

While Halide’s abstractions are specifically designed for image

processing pipelines, the abstractions for LIFT and RISE are

the high-level patterns that they exploit via rewriting.

RISE outperforms LIFT clearly, because prior LIFT work

focuses on individual stencil computations and lacks crucial

optimizations for image processing pipelines: notably operator

fusion and circular buffering.

Without convolution separation and register rotation, RISE

is on par with the Halide reference on all processors (except

for the small input image on the A73). We observe that while

the coarse-grain optimizations are the same, small differences

in the generated code remain and that the resulting perfor-

mance depends on fine-grain code generation details down to

assembly which are out of the scope of this paper.

With convolution separation and register rotation, RISE

always performs much better than without (almost 30% faster
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Fig. 8: Runtime performance of the Harris operator for the different processors, implementations and image resolutions.

on average) and is also faster than the Halide reference in

almost all cases by more than 30%. This shows that register

rotation is an optimization worth considering even though it

has not been implemented in Halide.

These results demonstrate that a domain-extensible com-

piler design where compiler optimizations are implemented as

extensible strategies composed of rewrite rules is capable of

achieving the same performance as a highly optimized com-

piler - such as Halide - specifically built for image processing.

Furthermore, higher performance can be reached by extending

such a domain-extensible compiler with optimizations that are

not built into existing domain-specific compilers.

VI. RELATED WORK

Image Processing Optimizations: Image processing opti-

mizations have been studied for decades, and are essential to

increase run-time performance and energy efficiency. All the

optimizations that we use in this paper are well-known, and

have been studied on the Harris operator before in [11]. Circu-

lar buffering is commonly used between pipeline stages, and

is automatically applied by many image processing specific

compilers such as Halide [3] or Darkroom [13]. Convolution

separation has long been used to reduce the computational

complexity of convolutions [14, 15, 16, 17], but is often

manually applied. More generally, stencil optimizations such

as overlapped tiling [18, 19, 20, 21] are well-studied and are

used beyond the image processing domain.

Numerous libraries of optimized functions (e.g. OpenCV,

NPP, Intel IPP) implement some of these optimizations.

However, they are limited in functionality and many critical

optimizations cannot be applied across library calls.

Domain-Specific Compilers: Domain-specific compilers

generate high performance code from high level abstractions

by exploiting domain and hardware knowledge. Polyhedral

compilation techniques [22, 23] are often leveraged, such as

in PolyMage [24] for image processing, but also in compilers

for linear algebra or machine learning [25, 26]. Although

automatically yielding great performance, such compilers rely

on fixed heuristics and performance models, offering little

control over the optimizations. By separating algorithm from

schedule, Halide [3] offers more control over the optimiza-

tions. This empowers users to optimize their programs with

far more precision than compiler flags or configuration files.

Since the success of Halide, such a separation is found in

many compilers [27, 28, 29]. However, it remains that domain-

specific compiler designs mostly account for a restricted set of

abstractions and optimizations. As a result, they lack flexibility

and extensibility.

Domain Extensible Compilers: Delite [1] has been an

early framework providing parallel patterns, generic opti-

mizations and code generation to simplify the development

of domain specific languages. This allows a fixed set of

parallel patterns and generic optimizations to be re-used across

domains. However, Delite relies on optimization passes that

offer little control over the optimizations applied. AnyDSL

[2] is a more recent approach leveraging partial evaluation to

allow writing more powerful and flexible optimizing libraries.

However, designing and extending such libraries remains an

open problem.

This paper follows ideas from the LIFT project [4], where

computations are encoded with data-parallel patterns, and opti-

mizations are encoded in a system of rewrite rules. This paper

directly builds on the recent work on RISE and ELEVATE [8]

that allow compiler optimizations to be expressed as user-

defined strategies in the new strategy language ELEVATE.

We make use of these user-defined optimization strategies to

provide precise control over the applied optimizations. This

paper is the first to study how to apply these ideas on a

complete image processing pipeline composed of multiple

operators, along with the specific optimizations involved to

reach high-performance.

VII. CONCLUSION AND FUTURE WORK

In this paper, we showed that a domain-extensible compiler

is capable of expressing and optimizing image processing

pipelines. Using the Harris corner detection as a case study,

our runtime results on four mobile ARM multi-core CPUs

show that our compiler significantly outperforms OpenCV

library code, clearly outperforms the similarly designed LIFT

compiler and is competitive to the state-of-the-art image
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processing compiler Halide. On top of expressing an optimized

schedule from Halide as extensible user-defined optimization

strategies applying operator fusion and circular buffering, we

are able to reach higher performance by incorporating con-

volution separation and register rotation optimizations. These

two optimizations cannot be expressed in a Halide schedule,

but are easily expressed as RISE patterns, rewrite rules and

ELEVATE strategies.

We used optimization strategies to precisely control the

applied optimizations: automated heuristics and explorations

are not always desirable or even feasible as they lack user

control, may result in poor performance, and may be too time

consuming. However, such fine-grain optimization strategies

are not easy to write, can be over-detailed and program-

specific. In the future, we envision using strategies to offer

tradeoffs between precise control (as in this paper) and full

automation (as in LIFT). Users would then provide strategies

that constrain and guide the automated exploration process.

Finally, we believe that the presented patterns and rewrite rules

are re-usable beyond image processing and across hardware

targets, just as the underlying optimizations are.
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APPENDIX

A. Abstract

This artifact contains the source code used to produce the

performance results presented in the paper. The host computer

drives benchmarks on multiple target processors over ssh.

B. Artifact Check-List (Meta-Information)

• Program: The RISE and ELEVATE Scala implementations;
The Halide compiler; The LIFT-generated OpenCL kernels;
Benchmark and plotting programs

• Compilation: With provided scripts
• Data set: Provided images
• Run-time environment: X86 Linux host; Linux targets with

OpenCL
• Hardware: Any OpenCL-enabled CPU
• Output: OpenCL kernels; runtime CSVs; figure PDFs
• How much disk space required (approximately)?: 2GB on

the host; 20MB on the targets (dependencies excluded)
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour to 1 day
• How much time is needed to complete experiments (approx-

imately)?: 1 hour
• Publicly available?: Yes

C. Description

1) How Delivered: The artifact is publicly available on GitHub:
https://github.com/rise-lang/2021-CGO-artifact

2) Hardware Dependencies: To reproduce the results reported
in fig. 1 and fig. 8, you will need access to ARM Cortex A7, A15, A53
and A73 processors (we used Odroid XU4 and Odroid N2 boards).
Other OpenCL-enabled processors can be used, but expect different
performance behavior.

3) Software Dependencies: We recommend using an X86
Linux for the host, and Linux targets. The software dependencies
are listed in the README and we provide an Ubuntu Focal Fossa
(20.04 LTS) Dockerfile for convenience.

D. Installation

Clone the repository on the host (potentially from the docker
image). Detailed instructions are given in the README.

E. Experiment Workflow

The provided scripts should be used to generate code, run bench-
marks and plot figures, as described in the README.

F. Evaluation and Expected Result

The main goals for artifact evaluation is to use the provided Rise
compiler to regenerate the OpenCL kernels used in the experimental
evaluation and to reproduce the performance results seen in fig. 1 and
fig. 8. For the same processors (or similar enough), we expect the
results to show similar performance trends as observed in section V-B.

G. Experiment Customization

The benchmarks can be run on different CPUs by writing a
small configuration file as long as the benchmark dependencies are
available.

H. Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/

artifact-review-badging
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