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Abstract
Inlining is a widely studied compiler optimization that is par-
ticularly important for functional languages such as Haskell
and OCaml. The Glasgow Haskell Compiler (GHC) inliner
is a heuristic of such complexity, however, that it has not
significantly changed for nearly 20 years. It heavily relies
on hard-coded numeric constants, or magic numbers, based
on out-of-date intuition. Dissatisfaction with inlining perfor-
mance has led to the widespread use of inlining pragmas by
programmers.

In this paper, we present an in-depth study of the effect of
inlining on performance in functional languages. We specif-
ically focus on the inlining behavior of GHC and present
techniques to systematically explore the space of possible
magic number values, or configurations, and evaluate their
performance on a set of real-world benchmarks where in-
line pragmas are present. Pragmas may slow down individ-
ual programs, but on average improve performance by 10%.
Searching for the best configuration on a per-program basis
increases this performance to an average of 27%. Search-
ing for the best configuration for each program is, however,
expensive and unrealistic, requiring repeated compilation
and execution. This paper determines a new single config-
uration that gives a 22% improvement on average across
the benchmarks. Finally, we use a simple machine learning
model that predicts the best configuration on a per-program
basis, giving a 26% average improvement.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Compilers.

Keywords: Inlining, Haskell, GHC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9438-3/22/09. . . $15.00
https://doi.org/10.1145/3546189.3549918

ACM Reference Format:
Celeste Hollenbeck,Michael F. P. O’Boyle, andMichel Steuwer. 2022.
Investigating Magic Numbers: Improving the Inlining Heuristic in
the Glasgow Haskell Compiler. In Proceedings of the 15th ACM
SIGPLAN International Haskell Symposium (Haskell ’22), September
15–16, 2022, Ljubljana, Slovenia.ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3546189.3549918

1 Introduction
Inlining is a classical compiler optimization that has been
studied extensively in imperative languages, such as byDavid-
son and Holler [1992], Chen et al. [1993], and Cavazos and
O’Boyle [2005], as well as in functional languages, for exam-
ple by Peyton Jones and Marlow [2002]. Inlining of function
calls is easy to implement in a compiler: replace the call of
a function by an instance of the function’s body. However,
deciding which function call to inline is not straightforward.
Chen et al. showed in 1993 the complex performance con-
siderations of inlining, requiring a balance of the benefits
of eliminating function call overhead with the additional
required code space and its potential downsides, such as
increased pressure on the instruction cache.

Peyton Jones and Marlow [2002] pointed out that inlining
is particularly important in functional languages, as it sub-
sumes other optimizations that are performed separately in
an imperative setting, such as copy propagation and jump
elimination.
In addition, functional programs often contain signifi-

cantly more functions that need to be considered for inlin-
ing, due to the frequent use of anonymous functions (a.k.a.,
lambda expressions) and the cultural encouragement to use
function abstractions abundantly. Furthermore, inlining is
not restricted to functions but can be performed for every
let-bound variable. Practical functional programming relies
on the ability of optimizing compilers, such as the Glasgow
Haskell Compiler (GHC), to aggressively inline function calls
and compile away the complex abstractions expressed in user
code.

Peyton Jones and Marlow, the primary developers of GHC,
call effective inlining “particularly crucial in getting good per-
formance”, state that “it is our experience that the inliner is a
lead player in many [performance] improvements”, and also
“No other single aspect of the compiler has received so much at-
tention” [2002]. Similarly, Minsky highlights the significance
for OCaml, as “inlining is about more than just function call
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overhead. That’s because inlining grows the amount of code
that the optimizer can look at at a given point, and that makes
other optimizations more effective” [2016]. While OCaml has
improved inlining with a new compiler intermediate rep-
resentation, maybe surprisingly, the approach of GHC to
inlining has not changed significantly in the last 20 years.
If this optimization is so critical to functional program-

ming in general, and GHC’s performance in particular—why
has it not been re-examined, given the massive hardware
changes witnessed in the last 20 years? A likely reason is that
its inlining decisions are poorly understood, rely on hard-
wired constants, and are scattered throughout the compiler.
While Peyton Jones and Marlow [2002] describe the overall
design choices of the GHC inliner and particular implementa-
tion challenges, they avoid discussing the crucial numerical
parameters that make up the heuristics that eventually de-
cide to inline or not. The heuristics’ complex implementation
and their reliance on these numbers makes evaluating and
modifying GHC’s inlining behaviour difficult.

These hand-coded numerical parameters reflect the GHC
developers’ “best guess” as to what should be inlined, and
they are often accommodated by comments expressing the
arbitrary nature of the choices made for their values. This
highlights them asmagic numbers, a term described byMiller
et al. [2009], and makes modification challenging. Further-
more, changes to these parameters—and GHC in general—are
still performance tested against the nofib benchmark suite
described by Partain in 1993. The nofib suite itself is falling
into obsoleteness, as observed by Marlow already over 15
years ago [2005]. Inlining in GHC is thus a compiler opti-
mization that is thought to be highly significant, yet difficult
to modify and evaluate.
Dissatisfaction with the performance of GHC’s inliner is

highlighted by developers’ frequent use of pragmas to manu-
ally annotate their code in an attempt to coerce GHC to inline
specific functions and improve performance. Our investiga-
tions revealed that 1 in 5 of Haskell projects uploaded to
Hackage, the Haskell community’s central package archive,
contain manually inserted “inline” compiler pragmas.

In this paper, we systematically study inlining in the con-
text of functional languages. We focus specifically on the
performance of GHC’s inliner, as GHC is one of the most
widely used optimizing functional compilers and known to
deliver good performance. While our experimental evalua-
tion is specific to GHC, our methodology and findings are of
interest to compiler engineers of other functional languages.

We study inlining across a set of real-world Haskell bench-
marks where programmers resorted to the use of pragmas to
improve inlining performance. We investigate the influence
of the magical number values within GHC’s inliner by pa-
rameterizing them and automatically exploring the space of
possible parameter values. In some cases, we observe signifi-
cant possible performance gains for well-chosen parameter
values on a per-benchmark basis. We are also able to find

a single parameter configuration that gives an average per-
formance gain across the benchmarks. Finally, we employ a
simple machine learning model that predicts good parameter
values and delivers good speedups for an unseen program
without the need for excessive compilation and execution.

To summarize, we make the following contributions:
• we present a real-world benchmark suite for evaluating
GHC’s performance, sourced from popular Hackage open-
source packages [Hollenbeck 2022];

• we perform an in-depth experimental analysis of the per-
formance of GHC’s inliner across a range of real-world
benchmarks;

• we show empirical evidence for the benefits of using au-
tomated tuning techniques to improve the performance
of the GHC inliner;

• and we demonstrate the benefits of using of a simple
predictive model that delivers significant performance.

2 Background
2.1 Inlining in Functional Languages
In functional languages, inlining may simply be described as
replacing the use of an identifier in an expression with the
identifier’s definition. An example in Haskell, originally pre-
sented by Peyton Jones and Marlow [2002], is given below:
let f = \x -> x*3 in f (a+b) - c

=⇒ (a+b)*3 - c

Peyton Jones and Marlow [2002] identify three distinct
program transformations that collectively perform the inlin-
ing for the example above:
1. The inlining itself replacing a use of a let-bound identi-

fier (here: f) by a copy of its definition (here: \x -> x*3):
let f = \x -> x*3 in f (a+b) - c

=⇒ let f = \x -> x*3 in (\x -> x*3) (a+b) - c

2. Dead code elimination that removes unnecessary let-
bindings where the bound identifier is not used in the
body of the let, as it is the case in the example:
let f = \x -> x*3 in (\x -> x*3) (a+b) - c

=⇒ (\x -> x*3) (a+b) - c

3. 𝛽-reduction transforming a lambda application into a let-
binding, enabling further inlining:
(\x -> x*3) (a+b) - c

=⇒ (let x = a+b in x*3) - c

To finalize the example, we perform more inlining and
dead code elimination steps:

(let x = a+b in x*3)-c

=⇒ (let x = a+b in (a+b)*3)-c

=⇒ (a+b)*3-c

As Haskell is a lazy and pure functional language, inlining,
dead code elimination, and 𝛽-reduction are always legal trans-
formations that do not alter the program’s meaning. Dead
code elimination and 𝛽-reduction are easy to implement, as
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both of them are generally beneficial, whereas decidingwhen
to inline what identifier is challenging. Therefore, GHC per-
forms inlining with careful consideration, despite its heavy
reliance on good inlining decisions for further optimization.
To determine when inlining may expose further opportu-
nities for optimization, GHC must examine the context in
which the inlinee occurs to balance the benefits of inlining
with potential negative effects, such as code duplication.

2.2 Overview of the GHC Inlining Heuristic
The logic for GHC’s inlining decisions is scattered through-
out the codebase. A search for “CoreUnfold” brings up 30 dif-
ferent files in GHC’s compiler directory. We thus present a
simplified account of the heuristic, depicted in Figure 1.
The callSiteInline function (top right of Figure 1) is

invoked to determine whether to inline or not. Any inlining
decision which requires nontrivial consideration is labeled as
a CoreUnfolding and passed to the function tryUnfolding
(middle of Figure 1), which makes a value judgment based
upon the estimated size of the callee, its arguments, how it
fits within its context, and other interesting attributes. At a
highly simplistic level, it calculates the cost and benefit of
inlining: if the cost minus benefit is less than a threshold,
then it performs inlining.

The calculation happens in this line:

small_enough =

(size - discount) <= ufUseThreshold dflags

which determines acceptability, where size is determined
by a traversal of the inlinee and discount is calculated with
consideration to the inlinee’s arguments, the continuation,
and dynamic flags optionally set upon compilation. The dis-
count represents the value gained, which would offset the
cost of inlining large things. This computation happens when
the Simplifier—a module where GHC iteratively applies opti-
mizations to the Core intermediate representation (Core IR)
code—calls tryUnfolding on a CoreUnfolding.

Each inlining decision additionally depends upon consid-
erations including but not limited to: the type of the expres-
sion, its arity, its number and characterization of arguments,
the phase of compilation, and a number of calculated dis-
counts and thresholds written directly into GHC simply as
best-judgment constants.

2.3 Magic Numbers in the Inliner
The calculations for both size and discount rely upon sev-
eral magic numbers written directly into the inliner. An
example of the use of these numbers occurs in the first few
lines of the function computeDiscount, shown in Figure 2,
which computes a discount value for all functions being con-
sidered for inlining. In computeDiscount, the number 10
refers to a discount given for the function itself.

Figure 1. Visualization of GHC’s Inliner. The function
callSiteInline is declared in CoreUnfold.hs and is called
from Simplify.hs. Rounded boxes indicate functions, ovals
indicate conditions, and dotted boxes indicate unfolding IDs.

In this example, making the number 10 larger would give
the inlinable item a larger discount to offset its size, increas-
ing its likelihood to be inlined. Such a modification would
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computeDiscount :: [Int] -> Int -> [ArgSummary]

-> CallCtxt

-> Int

computeDiscount arg_discounts

res_discount

arg_infos

cont_info

= 10 -- Discount of 10 because the result

-- replaces the call

-- so we count 10 for the function itself

Figure 2. First part of the computeDiscount function, with
the magic number 10, in CoreUnfold.hs.

make all functions more likely to be inlined because they
would start with a higher base discount, before the addi-
tion of any discounts based upon their arguments (which
would be calculated in the lines immediately following in
computeDiscount):

+ 10 * length actual_arg_discounts

+ round (ufKeenessFactor dflags *

-- Discount of 10 for each arg supplied ,

-- because the result replaces the call

fromIntegral (total_arg_discount+res_discount '))

Figure 3. Second part of the computeDiscount function,
with the magic number 10, in CoreUnfold.hs.

Additionally, the term res_discount’, short for “result
discount”, adds a discount when an efficiency is expected
to be gained through inlining—for example, through case
reductions. Its numerical value is computed by considering
a simplified version of the context, represented by the data
type CallCtxt. The original code of Figure 4 shows how
some of these possible CallCtxt values are assigned to the
magic number 40 to return as a result for res_discount’ in
one single line of code, along with the comments right after
it which debate its accuracy.

Magic numbers such as these are scattered throughout the
entire inliner, and its decisions are fundamentally dependent
upon them. We set out in this paper to study the impact of
these magical numbers systematically.

3 Approach
For this study, we wanted to answer the question: Could a
modification to the inliner’s thresholds yield a performance
improvement across Haskell code execution time? If the answer
to that question is yes, then we face two additional questions:
If so, how much improvement might we expect to see by
modifying GHC’s inlining thresholds? If not, how should we
then modify GHC to attain an optimal improvement?

It is necessary to answer these questions before redesign-
ing the inliner, given the complexity of the system. Thus,

_ -> 40 `min` res_discount

-- ToDo: this 40 `min` res_discount doesn 't

-- seem right

-- for DiscArgCtxt it shouldn 't matter because

-- the function will get the arg discount

-- for any non -triv arg

-- for RuleArgCtxt we do want to be keener to

-- inline; but not only constructor results

-- for RhsCtxt I suppose that exposing a data

-- con is good in general

-- And 40 seems very arbitrary

Figure 4. GHC 8.10.3: CoreUnfold.hs, line 1640. The top
line of code calculates the value for res_discount’ seen in
Figure 3. The developer’s comments highlight some of the
arbitrary decisions made.

we constructed a set of benchmarks with the intention of
revealing weaknesses in GHC’s inlining decision process.
We then modified GHC 8.10.3 such that we could change its
inliner’s magic number values through dynamic flags to see
how much we could affect the benchmarks’ execution times
through the inliner alone.

3.1 Optimization Space Exploration
Because parameterizing all of the inliner’s thresholds would
have been intractable, we focused on 10 hand-coded magic-
number constants to expose as dynamic flags, which could
then be passed into GHC when compiling an application.
Additionally, in our optimization space, we included two
of GHC’s built-in dynamic flags. Combined, this totals 12
parameters.
To approximately quantify the type of inlining decisions

being performed, we added hooks to GHC 8.10.3 and com-
piled it against the Cabal library, where Cabal is the canon-
ical system for building and installing Haskell packages.
During compilation, GHC performed 8,708,142 nontrivial
inlining decisions, where “nontrivial” means any inlining
for which it is not obvious that it should definitely be in-
lined. Among these nontrivial inlinings, 81.8% were des-
ignated as UnfIfGoodArgs—which means their unfolding
would be large enough to require consideration, but not so
large to immediately disqualify it from inlining. Before decid-
ing whether to inline, GHC gives these potential inlinings a
reduction in their calculated sizes via a discount calculation:

discounted_size = size - discount .

We therefore decided to create parameters from magic
numbers involved in the calculation of size and discount.

3.2 Characterization of the Parameters
Each parameter was selected because it had a direct impact
on GHC’s inlining decisions and would likely produce an
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Table 1. Inlining parameter dynamic flags, their descriptions, and original values.

Flag Description Original
Value

nontrivarg-disc Discount for an argument labeled “NonTrivial”. 10
funcitself-disc Constant discount value added to every function inlined. 10
actarg-disc Discount for each argument. 10
discargctxt-disc Context is the argument of a function with non-zero argument discount. 40
ruleargctxt-disc Context is the argument of a function with rules. 40
rhsctxt-disc The context is the right-hand side of a let. 40
arbctxt-disc The wild card remaining to catch any other type of context and calculate its discount. 40
cosbase Base size value of a class op. 20
cosargs Size metric added for each argument of a class op. 10
bigalt Size component of the biggest alternative when scrutinizing a case expression argument. 20
funfolding-fun-discount Adjust the eagerness of GHC to inline functions. 60
funfolding-dict-discount Adjust the eagerness of GHC to inline dictionaries. 30

observable effect on runtime performance. Table 1 describes
each parameter and gives their names and original values.
Three parameters, cosbase, cosargs, and bigalt, calculate

various components of an inlinee’s size. The remaining 9
help calculate its discount, or the numerical value estimated
to offset the cost of inlining. We also included the built-in
GHC dynamic flags -funfolding-fun-discount and -funfolding-
dict-discount, as they both pertained specifically to inlining.

4 Benchmark Construction
To experimentally evaluate the performance of GHC’s inliner,
we needed a benchmark suite that would allow us to analyze
the performance impact of different inlining decisions.

The nofib benchmark suite was originally constructed to
be a substantial, diverse, relevant set of programs in 1993;
but now, most of its programs run for a fraction of a second,
as pointed out by Marlow [2005]. Unfortunately, despite its
age, nofib has yet to be replaced or upgraded. As an alter-
native, we wanted to allow developers to experiment and
evaluate on interchangeable, testable, real-world packages
from Hackage so that the resultant benchmarks would be
heterogeneous and relevant to real-world needs. We based
that assumption on previous work to construct a benchmark
suite for JavaScript, as described by Richards et al. [2011a].

We therefore constructed a tool in Python to select Hack-
age packages specifically to suit our benchmarking goal: to
identify room for execution time improvement as it pertains
to inlining. These programs needed to run for an adequate
amount of time, perform a variety of different tasks, and
have consistent execution times such that the same inlining
decisions would reproduce the same results.

4.1 Benchmark Selection
Stackage is a distribution of a subset of Hackage, where pack-
ages within the same snapshot will build together and pass
all of their tests. For our benchmarks, we selected packages

contained within a single Stackage snapshot.1 In this Stack-
age Nightly build, 854 of 2218 packages (about 39%) used
QuickCheck, a tool which generates random tests developed
by Claessen and Hughes [2000]. Initially, these randomly
generated tests were a significant source of unwanted noise.
To address this, we set QuickCheck’s random seed to one
constant and made its test times consistent. We then enabled
our scripts to automatically patch all selected packages’ de-
pendencies with our modified QuickCheck.
In our Stackage snapshot, 421 of the 2218 packages con-

tained INLINE pragmas—or about 19%. We hypothesized
these packages may provide code where developers had iden-
tified a good set of problems upon which to evaluate inlining.
Section 4.2 explains the motivation for that decision.
Influenced by our observation of pragmas, we identified

236 packages with INLINE pragmas in their “src” folders that
could be run with cabal new-test. From those packages,
we sub-selected 10 which each ran over 4 seconds, decreasing
the likelihood that any speedup percentages observed would
fall outside the range of noise. Table 2 characterizes the
selected 10 packages.

4.2 The Consideration of INLINE Pragmas
Compiler pragmas are lines of code specific to individual
compilers, rather than the grammars of languages them-
selves. Programmers insert these pragmas to instruct a com-
piler on how to process and optimize certain input programs.
In GHC, a pragma to instruct GHC to inline a function

is known as an INLINE pragma. An INLINE pragma may be
placed beneath the declaration of a function to coerce GHC
to try to inline the function, if it can.

An example of the use of an INLINE pragma is:

key_function :: Int -> String -> (Bool , Double)

{-# INLINE key_function #-}

1stackage-nightly-2020-01-31
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Table 2. Selected Stackage packages and their information. SLOC are estimates. Descriptions were taken from the packages’
Hackage profiles.

Package Version SLOC Description Default
Sec.

INLINE
Pragmas

hw-rankselect 0.13.3.1 1387 Efficient rank and select operations on large bit-vectors 8.18 88
ListLike 4.6.3 3402 The ListLike package provides typeclasses and instances to

allow polymorphism over many common datatypes.
23.04 2

loop 0.3.0 155 Fast loops (for when GHC can’t optimize forM_) 19.94 8
metrics 0.4.1.1 1819 High-performance application metric tracking 58.48 9
midi 0.2.2.2 5094 Handling of MIDI messages and files 19.18 2
monoid-subclasses 1.0.1 4900 Subclasses of Monoid 35.12 334
nonempty-containers 0.3.3.0 10055 Non-empty variants of containers data types 4.38 520
poly 0.3.3.0 2040 Haskell library for univariate and multivariate polynomials,

backed by Vector.
94.56 57

reinterpret-cast-0.1.0 0.1.0 122 Memory reinterpretation casts for Float/Double and
Word32/Word64

26.86 3

set-cover 0.1 2781 Solve exact set cover problems like Sudoku, 8 Queens, Soma
Cube, Tetris Cube

15.55 16

An INLINE pragma does not guarantee inlining. For exam-
ple, GHC will not inline a function which breaks the loop of
a mutually-recursive group. Coercing an inline may not have
a positive effect on performance, and the INLINE pragma
may have no effect if the function is small enough that GHC
would inline it anyway. Developers insert these pragmas at
their discretion, usually in the hope to improve the program’s
performance.

4.3 Pragma Example
User-inserted compiler pragmas may hint that a compiler’s
optimization decisions could be improved. This snippet from
poly contains the INLINE pragma {-# INLINE integral #-}:

-- | Compute an indefinite integral of a polynomial ,

-- setting constant term to zero.

--

-- >>> integral (3 * X^2 + 3) :: UPoly Double

-- 1.0 * X^3 + 3.0 * X

integral :: (Eq a,Fractional a,Vector v (Word ,a)) =>

Poly v a -> Poly v a

integral (Poly xs) = Poly

$ map (\(p,c) -> (p+1, c/( fromIntegral p + 1))) xs

{-# INLINE integral #-}

Here, the function integral is overloaded. Without inlin-
ing it, integral would get passed a dictionary of functions
for the possible types of ‘a’.
When integral is inlined, GHC may see that ‘a’ has a

specific type—for example, float—and then specialize for it.
In this way, we can sometimes substitute the retrieval and
application of unknown higher-order functions with single
machine instructions by telling GHC to inline with pragmas.
This makes the resultant code much faster.

5 Experimental Setup
To analyze, explore, and improve the performance of the
GHC inliner, we perform an in-depth experimental evalua-
tion on our benchmarks. In all experiments, programs are
executed 10 times and average time is reported. The default
baseline is the execution time of a package compiled with
unmodified GHC 8.10.3 and INLINE pragmas disabled. We
refer to such execution times as without pragmas. If INLINE
pragmas are enabled, this is referred to as with pragmas.

We wanted to explore both parameter values which were
likely to yield good performance and also values from a
larger range; therefore, we sampled from both a normal dis-
tribution and a uniform distribution. Sampling from a normal
distribution stays near GHC’s original values at the mean
and assumes that they are reasonable values. The normal
distribution therefore takes 𝜇 as the original flag’s value and
𝜎 = 0.4. If the generated number was negative, number gen-
eration recurred until sampling produced a positive value.
We ran 140 configurations randomized in this manner: 70 on
the packages with pragmas and 70 without.

We ran additional configurations from a uniform distribu-
tion with a lower bound of 0 and an upper bound of 2 ∗ N,
where 𝑁 was the default value. For this experiment, we col-
lected 250 configurations without pragmas and 250 with
pragmas. The final result contained 640 randomly sampled
data points, 320 without pragmas and 320 with pragmas.
When we evaluate the performance impact of searching for
good configurations, we refer to this as search. We ran all
benchmarks in isolation on a dedicated server (AMD EPYC
7720P CPU, 256GB RAM).

6 Experimental Results
We first examine the impact of pragmas and a per-program
parameter configuration search on the benchmarks. Then
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Figure 5. Best-case speedups for each package, grouped by experiment. Speedups are reported as run time ratio along the
x-axis and labelled with speedup percentages at the top of bars. The baseline is default GHC without pragmas in package code.

we analyze both the best-performing parameter values, as
determined by execution time, and their impact on inlining
decisions. Next, we evaluate the performance of the best sin-
gle fixed-parameter configuration for all programs. We then
evaluate and analyze a simple cluster-based model to pre-
dict good configurations for an unseen program. Finally, we
examine to what extent inlining is architecture-dependent.

6.1 Performance Improvement
Figure 5 shows the best performance improvements found
when adding pragmas and configuration search on a per-
program basis. All best configurations reported in this figure
came from the uniform distribution. The respective geomet-
ric means across all programs are summarised in Figure 6.
Pragmas. “Default with pragmas” in Figure 5 shows the

performance difference when INLINE pragmas are included
in the code versus the baseline (code with pragmas removed).
The geometric mean speedup for this experiment was 10%,
as shown in Figure 6. However, most of this improvement
came from one package, poly, which had a 154% speedup.
Although six of the other packages had a speedup above zero,
only one had a speedup above 3%. In fact, two packages had
negative speedups at -4%, where the pragmas actually had

Figure 6. Geometric mean speedups for all experiments.
Baseline: Default, without pragmas. "Search With Prag-
mas" and "Search Without Pragmas" show geometric mean
speedups of the averaged best configurations for each pack-
age. "Best Configuration" experiments represent the single
best configuration applied to all 10 packages.

a detrimental effect on execution time. While pragmas can
improve the performance of Haskell code, their use shows
a variance of results. This may have multiple explanations,
three of which are 1) developers may insert pragmas where
GHC would normally inline anyway, 2) the effectiveness of
the pragmas has changed over time or architectures, or 3) the
effectiveness of the pragmas is not verified by or reflected in
test cases.
Search. If we search and evaluate configurations in our

space on each program without pragmas enabled and report
the best value, we get the results labeled “Search without
pragmas” in Figure 5. If we repeat this search experiment
with pragmas enabled, we get the results in Figure 5 labeled
“Search with pragmas”.

As the results in Figure 6 show, searching for the best
configuration on a per-program basis significantly improves
performance. Although searching with pragmas gives, on av-
erage, better performance than searching without pragmas,
Figure 5 shows there are 5 programs where searching with-
out pragmas gives a better individual speedup than the other
two experiments: monoid-subclasses, nonempty-containers,
hw-rankselect, ListLike, and midi. If we calculate the geo-
metric mean of the best speedups across all experiments,
we achieve the maximum possible speedup of 27% shown in
Figure 6. Finally, independent of pragmas, searching always
delivers a performance improvement. Performance improves
without pragmas by 9% and actually has a greater additional
impact of 16% (26% vs 10%) on packages with pragmas.

Speedup distribution. Figure 7 shows the histograms of
speedups achieved with and without pragmas. While the
majority of results are clustered around 1 (where 1 indicates
no change in execution time), there are some significant
positive and negative outliers. For the configurations with
pragmas, a speedup over default was observed 64% of the
time; and for the configurations with pragmas removed, a
speedup was observed 50% of the time. This reflects the
earlier observation that inline pragmas, on average, improve
performance.
In Figure 8, we examine the best speedup achieved over

time as we search the configuration space. The x-axis is
the number of configurations evaluated, while the y-axis
reports the best speedup achieved so far. There are two lines
representing presence of pragmas, solid with pragmas and
dottedwithout pragmas. The baseline is default GHCwithout
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(a)

(b)

Figure 7. Histogram of individual package speedups from
search across 320 configurations without (a) and with (b)
package INLINE pragmas.

Figure 8. Maximum total speedup of the single best con-
figuration observed over time, search without pragmas
(dotted line) and with pragmas (solid).

pragmas. While most speedup is achieved early in the search,
many configurations are needed to find the best performance.

(a)

(b)

Figure 9. Top (a): Difference from default for each flag, by
top configuration for 3 most improved programs, without
pragmas. Bottom (b): Values for each single best configura-
tion for each package. Yellow diamonds are default values.
White bars indicate sampling boundaries.

6.2 Analysis
In this section, we examine how the best values of parameters
vary across programs.
6.2.1 Parameters.
Distribution. In Figure 9, we took the single best config-
uration for each package and plotted its values for each
parameter. Optimal values for each flag, and for each pack-
age, are spread across the range of the random distributions
from which they are sampled—with the exception of fun-
foldingfun, which almost entirely prefers a value above 50
(minus one data point).

Looking at a wider set of the most performant configu-
rations, in Figure 10 we filtered the data to include config-
urations within 1% of the optimal value for each project.
We additionally excluded configurations with less than a 3%
speedup, which removed all configurations for the packages
loop and metrics. In the remaining data, the flag actarg seems
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Figure 10. Histograms of parameter values for configurations within 1% of the optimal speedup for each package, across all
samplings.

to clearly prefer a value higher than its default (except for 3
configurations in which its value is 0); the flag cosbasemostly
prefers a value lower than its default; but overall, all of the
flags contain values from the lower and upper bounds of
their random distributions.
Variation across most-improved programs. If we ex-

amine the three best-performing programs in more detail,
Figure 9a shows the percent difference from the default
values of the best flag configurations for these three pack-
ages (without pragmas). The three packages in question,
poly, nonempty-containers, and set-cover, have respective
speedups of 14%, 20%, and 25%. For almost any flag, the three
packages strongly differ—with the flag arbctxt having the
least disagreement at +20%,-10%, and +17.5%. Where Fig-
ure 9b suggests all packages’ best-case configurations differ
widely on their ideal values, Figure 9a confirms that this
disagreement holds even among the three packages with the
highest observed speedups.
Reflecting on intuition. We case matched the context

parameters discargctxt, ruleargctxt, rhsctxt, and arbctxt to
collect values to address the comments in Figure 4. Recall
the developer deliberated over what the value of the magic
number for the call context should be and speculated that
the value for DiscArgCtxt should not matter, the value for
RuleArgCtxt should perhaps be higher ("keener to inline"),
the value for RhsCtxt should probably be high to expose
the inlining, and 40 seems rather arbitrary for all of them.
The data disagrees with the comments on the two points
of: ruleargctxt seems to slightly prefer being at or below 40,
and so does rhsctxt. For all four contexts, the range of their
values in optimal configurations varies widely.

6.2.2 Inline decisions. Table 3 shows a comparison of
GHC’s default inlining behavior to that of the best configu-
ration for each package. To summarize, every best configu-
ration considers more total items for inlining than default

Table 3. Inlining decisions, default vs best.

Package Total Decisions % Inlined Avg. Size
Inlined

Default Best Def. Best Def. Best
hw-rankselect 1,166,781 1,515,164 6.0% 5.7% 14 18
ListLike 910,967 999,237 7.8% 7.4% 15 19
loop 363,940 384,689 6.0% 6.0% 21 25
metrics 355,448 363,286 6.5% 6.4% 19 20
midi 713,076 1,140,791 6.9% 4.8% 26 31
monoid 954,442 1,668,907 5.1% 3.6% 19 29
nonempty 920,901 1,769,534 5.3% 2.8% 26 31
poly 1,405,465 2,635,700 7.1% 3.1% 17 32
reinterpret 361,600 383,446 6.0% 5.8% 20 22
set-cover 414,699 877,758 6.0% 3.1% 19 27

GHC, with an averaged 48% increase in number of combined
yes and no decisions. Nine of the ten packages decide to
inline more total items than default GHC, with the exception
of poly. However, all packages inline a smaller percentage of
the decisions, relative to total decisions, than default. Addi-
tionally, all packages’ best configurations decided to inline
larger items, with an averaged inlining size of 25.4 versus
the default’s averaged size of 19.6.

6.2.3 Characterizing Good Inline Decisions. To better
understand the inlining behavior of the default versus best
configurations, we collected information vectors for the in-
lined code in both cases containing information about the
compiler intermediate representation (Core IR) at each in-
lined site, along with the yes or no decision. Summaries of
the derived IR vectors are shown in Table 4.
Collection of the Core IR features. To collect features

of the inlining decisions, we parsed both the body of the
expression being inlined and the calling context, for every
nontrivial inlining decision in the benchmarks. Additionally,
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Table 4. Collected IR data: their abbreviations, possible val-
ues, and descriptions.

Abbr. Value Description
Continuation Features

CSt Int Stop[e] = e
CCI Int CastIt co K)[e] = K[ e ‘cast‘ co ]
CAV Int (ApplyToVal arg K)[e] = K[ e arg ]
CAT Int (ApplyToTy ty K)[e] = K[ e ty ]
CSe Int (Select alts K)[e] = K[ case e of alts ]

CSB Int
(StrictBind x xs b K)[e] =
let x = e in K[\xs.b]
or equivalently = K[ (\x xs.b) e ]

CSA Int StrictArg (f e1 ..en) K)[e] = K[ f e1 .. en e ]
Argument Features

AINT Int The argument has structure.
AIVA Int The argument is a constructor application, partial

application, or constructor-like.
AITA Int The argument is not interesting, i.e., deserves no

unfolding discount.
ARGS Int The number of arguments

Expression Features
LVAR Int Indicates if the expression is a lone variable.
IFV Int Number of vars that don’t occur in a coercion.
IFJI Int Number of join variables
IFL Int Number of literals
IFCase Int Number of case expressions
IFR Int Number of recursive lets
IFLNR Int Number of non-recursive lets
IFCast Int Number of cast expressions
IFLam Int Number of lambda abstractions
IFApp Int Number of applications
FOLDTY { 0, 1 } Type of unfolding: UnfWhen or UnfIfGoodArgs
SIZE Int The size of the expression
WF { 0, 1 } GHC estimate if expr. will not duplicate work

we included the variables lone_var (LVAR); size (SIZE);
is_wf (WF); the type of unfolding (FOLDTY); and the num-
ber of arguments to the expression (ARGS). In each decision,
we tallied the number of occurrences of expression and con-
tinuation Core IR features in a bag-of-words manner, then
appended the values for LVAR, WF, FOLDTY, SIZE, and the
yes or no inlining decision.

The Continuation Features in Table 4 are constructors
of the data type SimplCont describing a strict context that
does not bind any variables. It represents the rest of the
expression, above the point of interest, and allows GHC’s
simplifier to traverse it like a zipper. The inlinee’s expres-
sion is represented by the features in Expression Features,
where the values Var, Lit, Case, Cast, Lam, and App are con-
structors of the recursive data type CoreExpr. The features
IFR and IFLNR indicate recursive let and non-recursive let,
respectively, which are pattern matched against composi-
tions of the values Let, Rec, and NonRec.

Analysis.We averaged the collected feature vectors across
all call sites and programs and compared the difference be-
tween the default and best configurations, as shown in Fig-
ure 11. For some features there is little difference, such as

Figure 11. Difference of inlining features, best-case configu-
rations compared against default GHC.

Case expressions (IFCase), Stop values (CSt), join variables
(IFJI), and work-free expressions (WF). For other features,
there is significant difference—such as far fewer inlinings
for CastIt (CCI) and StrictBind (CSB), and far more in-
linings for non-recursive lets (IFNLR) and recursive lets
(IFR). Additionally, the sizes of the best-case inlinings are
31% larger than GHC’s default inlinings. As an explanation,
non-recursive let is an example of an inlining decision as-
sociated with anonymous functions particular to functional
languages. In summary, then, these features suggest that
more inlinings should be performed over anonymous func-
tions, and larger things should be inlined.

6.3 The Single Best Configurations
While searching for good configurations yields better perfor-
mance, it is is interesting to ask if a single fixed configuration
can perform better than the default across all programs. If so,
this could replace the existing hard-wired numeric values.
Figure 12 shows the speedup achieved when applying the
best-found single configuration per program for the pack-
ages with and without pragmas, respectively. Table 5 shows
these two configurations’ parameter values. On average, a
mean speedup of 7% is achieved with pragmas disabled, and
22% with pragmas enabled. Thus, when searching for ideal
configurations is too expensive, then using a new single best
configuration gives already significant improvement.

6.4 A Simple Machine Learning Predictive Model
We saw that when searching for the best configuration per
program, we achieve an average speedup of 26%; however,
only 22% is achievable with a single, fixed, best-on-average
configuration. Next, we investigate whether a simple ma-
chine learning approach can improve performance without
the need to search many configurations to find an optimum.
We use a simple top-down dynamic programming algo-

rithm for clustering: start with the single configuration that
has the most programs at their optimal performance as the
initial cluster, then place the poorest performing program
into a new cluster within its own best configuration along
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Figure 12. Best-performing single configurations. Top: with
pragmas. Bottom: without pragmas. All speedups relative to
baseline of unmodified GHC times without pragmas.

Table 5. Parameter values for configuration 229 (single best
without pragmas) and 265 (best with pragmas). Default GHC
values in rightmost column. 1) funfolding-fun-discount. 2)
funfolding-dict-discount.

Parameter 229 (Without
Pragmas)

265 (With
Pragmas)

GHC

nontrivarg-disc 15 11 10
funcitself-disc 6 1 10
actarg-disc 17 17 10
discargctxt-disc 55 40 40
ruleargctxt-disc 38 60 40
rhsctxt-disc 54 19 40
arbctxt-disc 23 34 40
cosbase 0 22 20
cosargs 15 2 10
bigalt 37 38 20
funfolding-fun1 71 115 60
funfolding-dict2 58 49 30

with any other program that performs better in that config-
uration. Recur on this step until just before the number of
desired clusters is exceeded.
With a new unseen program, we must determine which

cluster it belongs to based on similarity of features. Although
static or dynamic program features could be used, we instead
use the speedups of the program on a set of selected configu-
rations to determine which cluster it belongs in. Depending
on the speedups the program exhibits against each configu-
ration, we allocate it to the cluster of the fastest speedup and

Figure 13. Performance of model. Speedups for each pack-
age, using a 4-cluster based predictive model with pragmas.

Table 6. Parameter values for configurations 136, 23, 237, and
278 in Figure 13. Default GHC values shown in rightmost col-
umn. 1) funfolding-fun-discount. 2) funfolding-dict-discount.

Parameter 136 23 237 278 GHC
nontrivarg-disc 6 5 6 14 10
funcitself-disc 11 13 7 13 10
actarg-disc 18 16 14 11 10
discargctxt-disc 60 28 29 22 40
ruleargctxt-disc 0 32 13 24 40
rhsctxt-disc 56 17 39 54 40
arbctxt-disc 64 69 32 35 40
cosbase 1 17 38 7 20
cosargs 13 12 15 11 10
bigalt 37 9 38 38 20
funfolding-fun1 71 101 77 108 60
funfolding-dict2 43 21 17 57 30

assign it that configuration of magic numbers. We performed
this learnt approach with leave-one-out cross-validation
across the benchmarks.
Analysis. To analyse the results, we focus on a single

clustering, where we trained the model without the first
benchmark and then assigned it to the best cluster. This is
presented in Figure 13, showing an average speedup of 26%
across the benchmark suite.
Table 6 shows the values of the parameters in each clus-

ter configuration. It can be highlighted that some param-
eters are similar across clusters, but seldom in complete
agreement. The cosargs parameter has the closest values
to each other at 13, 12, 15, and 11—also near the default 10.
The funfolding-fun-discount parameter is consistently
higher than default GHC across all four configurations. Three
clusters (136, 237, and 278) have very close values of bigalt
near 38, but cluster 23 prefers this value at 9; and similarly,
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Figure 14. Execution times for best-case configurations for each project on alternative architecture. Geometric mean speedup
of configurations without pragmas: 6%. Geometric mean speedup of configurations with pragmas: 21%.

three clusters prefer a discargctxt-disc value in the twen-
ties, yet cluster 136 prefers a value of 60. This further sup-
ports the possibility that no single configuration will ever
approach the optimal improvement observed so far for each
type of program.

Towards better inline heuristics. An extended approach
would be to build a model that predicts whether to inline or
not at each site based on code structure. Core IR vectors could
be used as features for a machine-learning-based inlining
model and is future work.

6.5 Cross-Architecture Transference
To investigate whether inlining behavior is independent of
platform, we evaluated the best performing configurations
on a new machine. The second machine was an Intel Xeon
CPU E3-1270 v6 with 4 cores running at 3.8GHz with 62GB
RAM on Debian GNU/Linux 10.
The results are shown in Figure 14. On average, we are

able to obtain a 6% and 21% improvement without and with
pragmas, respectively. This fares favorably when compared
to the original machine where 9% and 26% were respectively
found. These encouraging results show that improvements
to the inliner may port across machines; however, further
work will be needed to confirm this.

6.6 Results Summary
Our experiments have demonstrated that a change of the
GHC inliner could yield a significant performance improve-
ment, demonstrably up to 27%, which we attained by modi-
fying the inliner’s magic numbers. However, much of that
improvement is uncovered with the help of INLINE prag-
mas. A single new magic number configuration, with help
from pragmas, can get us to a 22% improvement—and 26%
when packages are clustered into 4 configurations. Without
pragmas, a single best configuration can give us a 7% im-
provement, and 9% with a 4-configuration clustering. These
configuration changes have been shown to improve perfor-
mance across architectures as well.

To achieve the maximum observed speedup, however, the
entirety of GHC’s inliner should be rethought. The data
suggests that no single set of magic numbers will optimize

all different types of programs. A newer inlining heuristic
should also give more consideration to anonymous functions,
and it should inline larger things. The complexity of this
problem indicates that machine learning would be a good
alternative to further hand tuning.

7 Related Work
There is much prior work in benchmarking, inlining, and
program optimization, which we briefly summarize here.

Benchmarking. Priorwork explores the creation of bench-
marks that mimic real-world behaviour in JavaScript, as de-
scribed by Richards et al. [2011b] and Mickens et al. [2010].
Blackburn et al. [2006] describe the selection of real-world
open-source benchmarks for Java, and Pattabiraman and
Zorn [2010] and Ricca and Tonella [2001] present systems
for testing individual applications. Benchmark creation has
been addressed via synthesis of benchmarks from real-world
programs by Van Ertvelde and Eeckhout [2010], and more
recently by Cummins et al. [2017] and Goens et al. [2019].

Inlining. The approaches closest to this work are by Cava-
zos and O’Boyle [2005] and Kulkarni et al. [2013] that target
inlining in Java, exploring a parameter space of a simple
decision tree. Later work by Sewe et al. [2011] assumed a
fixed inlining heuristic and predicted likelihood of inlining to
guide information propagation. More recently, Mosaner et al.
[2021] investigate the use of machine learning to predict the
impact on code size duplication. As Java is JIT compiled, the
focus is on trading compilation time with execution time.
For instance, Ochoa et al. [2021] aim to reduce compilation
time at the expense of greater execution time. GHC, however,
relies on aggressive, offline compilation where inlining is the
key optimization. Rather than a simple decision tree, GHC
has a complex inlining heuristic that users feel performs
sub-optimally, requiring pragma guidance.

Search-based optimization. Iterative optimization finds
performance improvement by trying multiple configurations
of compiler optimizations and has been studied extensively
[Agakov et al. 2006; Chen et al. 2010; Franke et al. 2005; Kulka-
rni et al. 2004]. More closely related work investigates param-
eters in compiler optimizations [Ansel et al. 2014; Ashouri
et al. 2018; Chen et al. 2021; Monsifrot et al. 2002] and uses
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machine-learning-based optimization, as described by Wang
and O’Boyle [2018]. Early works by Stephenson et al. [2003]
explored the tuning of a compiler heuristic to drive low-level
optimization, focusing on issues such as hyper-block for-
mation which impact performance. Search of optimization
spaces has also been used at higher levels of the compiler.
Ganser et al. [2017] focus on parallelization and tiling within
the polyhedra space, showing that a simple random search of
configurations can deliver performance without the need for
more expensive technologies such as genetic algorithms. Op-
timization search has been widely used in different compiler
domains, as described recently by Leather and Cummins
[2020]. All these approaches target imperative programs
where the control-flow graph and function parameter types
are statically known. Haskell is a higher-order polymorphic
functional language where the treatment of functions, in-
cluding inlining, dominates performance concerns.

Functional programming.The need to improveHaskell’s
performance is well known and, for example, documented
by Jones et al. [2009] and Richards et al. [2011b]. Recent
work by Shivkumar et al. [2021] addressed predictability of
execution time, particularly for real-time programming rely-
ing on aggressive “defunctorization” which reduces code to
first-order by the insertion of look-up data structures. While
this increases runtime determinacy, it prevents performance
improvement due to large inline function blocks.

8 Conclusions
It has been widely recognized that inlining is critical for
GHC’s performance; but its heuristic has not been updated
for nearly 20 years, leading programmers to rely on pragmas.
Inlining decisions are pervasive in the compiler source code
and highly complex, relying on hard-coded “magic num-
bers” based on out-of date intuition. This complexity means
that changing the heuristic or numeric values may lead to
unexpected behavior and is a barrier to improvement.

In this paper, we explored themagic-number configuration
space on modern benchmarks and showed that significant
performance improvement is available, justifying an update
of the inlining heuristic. However, the number of programs
selected was small and focused on those with pre-existing
inline pragmas. Future work will evaluate a broader range
of benchmarks and platforms, and also investigate whether
greater structural change to the inliner can further improve
performance and maintainability.
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