
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Towards Pen-and-Paper-Style Equational Reasoning in
Interactive Theorem Provers by Equality Saturation
MARCUS ROSSEL, Barkhausen Institut, Germany and TU Darmstadt, Germany
RUDI SCHNEIDER, Technische Universität Berlin, Germany
THOMAS KŒHLER, ICube Lab, CNRS, Université de Strasbourg, France
MICHEL STEUWER, Technische Universität Berlin, Germany
ANDRÉS GOENS, University of Amsterdam, Netherlands and TU Darmstadt, Germany
Equations are ubiquitous in mathematical reasoning. Often, however, they only hold under certain
conditions. As these conditions are usually clear from context, mathematicians regularly omit them
when performing equational reasoning on paper. In contrast, interactive theorem provers pedantically
insist on every detail to be convinced that a theorem holds, hindering equational reasoning at the
more abstract level of pen-and-paper mathematics.

In this paper, we address this issue by raising the level of equational reasoning to enable pen-and-
paper style in interactive theorem provers. We achieve this by interpreting theorems as conditional
rewrite rules, and use equality saturation to automatically derive equational proofs. Preconditions
that cannot be automatically proven may be given as proof obligations to the user. Concretely, we
present how to interpret theorems as conditional rewrite rules for a significant class of theorems.
Handling these theorems goes beyond simple syntactic rewriting, and deals with aspects like proposi-
tional preconditions and type class instantiations. We evaluate our approach by implementing it as a
tactic in Lean, using the egg library for equality saturation with e-graphs. We show three use cases
demonstrating the efficacy of this higher level of abstraction for equational reasoning.

1 Introduction
In popular culture, equations are synonymous with mathematical knowledge. Schrödinger’s
and Maxwell’s equations capture our knowledge of the universe. Fermat’s little theorem, vi-
tal for today’s cryptography, describes an important equation in modular arithmetic. And
his last theorem, disproving an equation, defied mathematicians for hundreds of years. In-
deed, equational reasoning is one of the fundamental tools of mathematics.

Translating intuitive mathematical reasoning to machine-checkable languages is one of
the long-standing goals of interactive theorem provers (ITPs) [Wiedĳk 2006]. Arguably, it
is the raison d’être of systems like Rocq [Rocq Dev Team 2025], Isabelle [Paulson 1993] or
Lean [de Moura and Ullrich 2021]. Decades of research in ITPs has brought innovations
that made it easier to express reasoning steps, often by being closer to informal “pen-
and-paper” mathematics found in textbooks. Among these innovations is a long tradition
of term rewriting techniques. From extensible simplification [Boyer and Moore 1973], to
e-graphs [Detlefs et al. 2005], and proof-producing congruence closure [Nieuwenhuis and
Oliveras 2005; Selsam and de Moura 2016a], rewriting is a critical tool in the ITP toolbox.
Authors’ Contact Information: Marcus Rossel, Barkhausen Institut, Dresden, Germany, marcus.rossel@
barkhauseninstitut.org and TU Darmstadt, Darmstadt, Germany, marcus.rossel@tu-darmstadt.de; Rudi
Schneider, Technische Universität Berlin, Berlin, Germany, r.schneider@tu-berlin.de; Thomas Kœhler,
ICube Lab, CNRS, Université de Strasbourg, Strasbourg, France, thomas.koehler@cnrs.fr; Michel Steuwer,
Technische Universität Berlin, Berlin, Germany, michel.steuwer@tu-berlin.de; Andrés Goens, University
of Amsterdam, Amsterdam, Netherlands, a.goens@uva.nl and TU Darmstadt, Darmstadt, Germany,
andres.goens@tu-darmstadt.de.

POPL, Rennes, France
2025. ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2025.

HTTPS://ORCID.ORG/0009-0001-3567-6890
HTTPS://ORCID.ORG/0009-0008-9151-773X
HTTPS://ORCID.ORG/0000-0001-8461-8075
HTTPS://ORCID.ORG/0000-0001-5048-0741
HTTPS://ORCID.ORG/0000-0002-0409-1363
https://orcid.org/0009-0001-3567-6890
https://orcid.org/0009-0008-9151-773X
https://orcid.org/0009-0008-9151-773X
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5048-0741
https://orcid.org/0000-0002-0409-1363
https://doi.org/XXXXXXX.XXXXXXX

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

Term rewriting reflects equational reasoning by transforming mathematical equations into
rewrite rules. The process of translating equations into rewrites typically involves identifying
a class of theorems that describes mathematical equations. These equational theorems are
then translated into rewrites rules by orienting the equation and converting universally-
quantified variables into (syntactic) pattern variables. This approach, however, is only sound
when an equation holds unconditionally, which equations used in pen-and-paper proofs
almost never do. For example, the Pythagorean theorem 𝑎2+𝑏2 = 𝑐2 requires the angle of the
triangle formed by the three sides 𝑎, 𝑏, 𝑐 to be a right angle. Similarly, Fermat’s little theorem
𝑎𝑝 ≡ 𝑎 (mod 𝑝) requires the exponent and modulus 𝑝 to be prime. When reasoning with
such equations on paper, mathematicians might silently check the conditions in their head.
When a condition is not obvious, they might annotate their reasoning with an explanation.
While some conditions are explicitly stated in theorem statements, other conditions are
often not. For example, the binomial theorem states that (𝑥 + 𝑦)𝑛 = ∑𝑛

𝑘=0 (
𝑛
𝑘)𝑥𝑘𝑦𝑛−𝑘. It

would be easy to think of this as an equation that holds unconditionally, but it does not. It
has several implicit conditions. For example, we assume that the operations that appear in
the equation are all defined for the set 𝑅 that 𝑥 and 𝑦 belong to: addition, multiplication,
integer powers and integer coefficients like (𝑛𝑘). Even if we do not typically think of it this
way, these are preconditions for this equation to hold. Without them, we could not even
state the theorem! Additionally, we need these operations to satisfy certain properties: 𝑅
needs to be a commutative ring, which constrains its algebraic structure.

To reason with such theorems in the same intuitive style as with pen and paper, we need
to convince the ITP that all conditions are satisfied. Unfortunately, as we demonstrate in
Section 2, ITPs at the moment require us to be explicit about both important precondi-
tions and minor nuances alike. This often makes proofs tedious to formalize and hinders
understanding of existing proofs, as the mathematical ideas are hidden among technicalities.

In this paper, we develop a novel approach to facilitate pen-and-paper-style equational
reasoning in ITPs, based on a representation of theorems over equations as conditional
rewrite rules. We give an explicit characterization of a class of suitable equational theorems,
described in the ITP’s underlying logic: in our case, Lean’s type theory [Carneiro 2019,
2024]. This involves a classification of preconditions, upon which we build a translation into
conditional rewrite rules used for automated term rewriting in an e-graph. In Section 3,
we give an overview of our approach and its integration as a tactic in Lean, based on the
efficient rewrite engine egg. Our approach is enabled by the following contributions:

• An encoding to translate theorems into conditional rewrite rules (Section 4), which
are then passed to an automated rewrite engine;

• a decoding justifying how theorems were instantiated and conditions were satisfied
in the automatically-found proof (Section 5);

• a set of extensions that further the usefulness of our approach, enabling it to prove
more theorems (Section 6).

We demonstrate our technique with multiple use cases in Section 7, showing that we
enable the desired pen-and-paper-style equational reasoning.

2 Challenges of Pen-and-Paper-Style Reasoning in Current Interactive Theorem Provers
Our goal is to enable a more informal, pen-and-paper style, equational reasoning in inter-
active theorem provers. To understand the inherent challenges with reconstructing formal
proofs from this style, we discuss an example implemented in the Lean theorem prover. We
will use it to identify concrete technical challenges, which we will then address.

, Vol. 1, No. 1, Article . Publication date: October 2025.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 3

(a) Reasoning with pen on paper

1 calc
2 _ = n! / ((r - 1)! * (n - r + 1)!) +
3 n! / (r! * (n - r)!) := by
4 rw [cast_add, cast_div ℎ1 ℎ2, cast_div ℎ3 ℎ4, cast_mul,
5 cast_mul]
6 repeat' rw [← Gamma_nat_eq_factorial]
7 rw [cast_sub (by omega), cast_add, cast_sub (by omega),
8 cast_one]
9 _ = n! / ((r - 1)! * (n - r)!) *

10 (1 / (n - r + 1) + 1 / r) := by
11 rw [Gamma_add_one ℎ5, mul_comm (n - r + 1 : ℝ),
12 ← mul_assoc, div_mul_eq_div_mul_one_div,
13 ← sub_add_cancel ↑r (1 : ℝ), Gamma_add_one ℎ6]
14 ring_nf
15 _ = n! / ((r - 1)! * (n - r)!) *
16 ((r + (n - r + 1)) / (r * (n - r + 1))) := by
17 rw [div_add_div _ _ ℎ5 ℎ7]
18 ring
19 _ = n! / ((r - 1)! * (n - r)!) *
20 ((n + 1) / (r * (n - r + 1))) := by
21 ring
22 _ = (n + 1)! / (r! * (n + 1 - r)!) := by
23 rw [_root_.div_mul_div_comm, mul_comm,
24 ← Gamma_add_one ℎ8, mul_assoc, mul_comm ((n - r : ℝ)!),
25 mul_assoc, ← mul_assoc, mul_comm ((r - 1 : ℝ)!),
26 sub_add, sub_self, sub_zero, ← Gamma_add_one ℎ7,
27 ← Gamma_add_one ℎ5]
28 ring_nf
29 _ = _ := by
30 rw [cast_div ℎ9 ℎ10, cast_mul]
31 repeat' rw [← Gamma_nat_eq_factorial]
32 rw [cast_add, cast_sub (by omega), cast_add, cast_one]

(b) A formalization in Lean using equational-reasoning style with
the calc tactic. The sub-proofs ℎ1 to ℎ10 are elided.

Fig. 1. Comparison of pen-and-paper-style equational reasoning and a direct translation into a Lean proof

Our motivating example is the proof of the binomial theorem. This is a classical theorem
that can be found in many entry-level textbooks, such as [Rotman 2006]. To prove the
binomial theorem: (𝑥 + 𝑦)𝑛 = ∑𝑛

𝑟=0 (
𝑛
𝑟)𝑥𝑟𝑦𝑛−𝑟, Rotman first establishes the notation for

binomial coefficients (𝑛𝑟) and proves the proposition that for all 0 ≤ 𝑛 and all 𝑟 with
0 ≤ 𝑟 ≤ 𝑛, (𝑛𝑟) = 𝑛!

𝑟!(𝑛−𝑟)! . The proof for the binomial theorem then follows from a corollary.
We see the proof of the inductive step of this theorem in Fig. 1.

On the left in Fig. 1a we see the reasoning from Rotman reproduced with pen on paper.
As typical for pen-and-paper proofs, the individual steps are not justified in detail. Instead,
there is a degree of “contextual knowledge” expected of the reader justifying the steps.

In contrast, on the right in Fig. 1b we see the reasoning in the Lean theorem prover. It is
not important to understand the details of this proof, which is a direct translation aiming
to preserve the same equational reasoning steps using Lean’s calc tactic, which enables
the justification of each proof step individually.1 Every line from the pen-and-paper proof
translates nicely to the lines highlighted in light blue (2-3, 9-10, 15-16, 19-20, and 22) in the
calc proof. However, after each such line in the proof, there are multiple additional lines of
justifications. For this, we use mostly the rw tactic that performs rewriting by replacing in
the proof goal the left-hand-side of the referenced equality definition by its right-hand-side.
In addition, we use specialized tactics, such as ring in line 21 that implements a decison
1Note that this is not the same proof as in the Lean mathematical library Mathlib [Community 2020], which
is not written in pen-and-paper style and uses other reasoning steps and tactics.

, Vol. 1, No. 1, Article . Publication date: October 2025.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

procedure for commutative rings. For brevity, we elided about 15 lines of additional proofs
for ℎ1 to ℎ10, which justify preconditions of theorems. All this noise makes the proof harder
to read and understand, but also harder to write and construct.

A key difference between the pen-and-paper proof and the formalized proof is context:
in the informal proof, we know that we are dealing with numbers and can reason about
them with the rules we know are true of them. In the formal proof we have to be explicit
about the types of our terms and the theorems that we use. For instance, these informal
“numbers” are natural numbers, yet we see terms like 1

𝑟 , which is not a natural number for
𝑟 ≠ 1. The informal proof silently uses the fact that we can embed the naturals into the
rationals (or reals), and, for example, assumes that expressions with factorials remain in the
natural numbers and are thus well-defined. In our formalization, on the other hand, we have
to be very explicit about this.2 Ideally, for a direct translation of such a proof into an ITP,
the prover should be able to infer, or at least ingest necessary contextual knowledge, such
that subsequent reasoning steps can be performed with little or no further justification.

To understand the key technical challenges that need to be overcome to infer or expose
the needed contextual knowledge and to enable pen-and-paper-style equational reasoning
in ITPs, we inspect the equational reasoning in the binomial theorem in more detail.

Choosing a Suitable Automated Rewrite Technique. To justify the equality (1) from Fig. 1a
we break it down into multiple smaller steps:

𝑛!
(𝑟 − 1)!(𝑛 − 𝑟 + 1)! +

𝑛!
𝑟!(𝑛 − 𝑟)!

(1.1)= 𝑛!
(𝑟 − 1)!

1
(𝑛 − 𝑟 + 1)! +

𝑛!
𝑟!(𝑛 − 𝑟)!

(1.2)= 𝑛!
(𝑟 − 1)!

1
(𝑛 − 𝑟 + 1)(𝑛 − 𝑟)! +

𝑛!
𝑟!(𝑛 − 𝑟)!

(1.3)= 𝑛!
(𝑟 − 1)!

1
(𝑛 − 𝑟)!(𝑛 − 𝑟 + 1) + 𝑛!

𝑟!(𝑛 − 𝑟)!

… = 𝑛!
(𝑟 − 1)!(𝑛 − 𝑟)! (

1
𝑛 − 𝑟 + 1 + 1

𝑟)

Each step is justified by one equation, such as (1.3) by commutativity of multiplication.
However, commutativity and associativity are known to be notoriously tricky to automate in
the context of rewriting, as these equations are applicable in both directions, and it is often
unclear which direction is beneficial. To overcome this challenge, we use a rewrite technique
called equality saturation, specifically the egg [Willsey et al. 2021] library, which is suited for
rewriting with non-directed equations. Equality saturation computes the congruence closure
of a set of equations by growing an equivalence graph (e-graph) that represents a growing
set of equivalent terms. However, equality saturation is a purely syntax-driven approach
and does not naturally capture the semantics of Lean’s expression language. Therefore, we
need to encode Lean expressions faithfully into terms in an e-graph to be able to perform
equational rewriting over them.

To capture the explicit reasoning steps of a pen-and-paper proof, our work builds upon our
prior ideas presented in Kœhler et al. [2024] where we introduce guided equality saturation.
This uses equational reasoning steps as intermediate guides, helping the proof of each step
using equality saturation. Our prior paper shows how this technique is used to successfully
prove simple theorems. However, our prior approach failed specifically on the example of
the binomial theorem! This is, among other things, because the proof requires reasoning
with theorems that have preconditions.

Syntactic Differences Despite Semantic Equality. Equality (1.1) follows by rewriting the
left term of the addition with the theorem 𝑎

𝑏⋅𝑐 = 𝑎
𝑏 ⋅ 1

𝑐 . In Lean, this theorem is written as:
2We define a macro to write n! for Γ(𝑛 + 1), where Γ is a generalization of the factorial to real numbers.

, Vol. 1, No. 1, Article . Publication date: October 2025.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 5

theorem div_mul_eq_div_mul_one_div :
∀ α [i : DivisionCommMonoid α] (a b c : α), a / (b * c) = a / b * (1 / c)

Notably, this theorem is defined over all types α which have a DivisionCommMonoid type
class instance i. As a result, the left-hand side of the theorem: a / (b * c) and the target
term: n! / ((r - 1)! * (n - r + 1)!) do not match syntactically when desugared. Specifi-
cally, they differ already when desugaring just the division, with

HDiv.hDiv ?α ?α ?α (instHDiv ?α (DivInvMonoid.toDiv ?α
DivisionMonoid.toDivInvMonoid ?α (DivisionCommMonoid.toDivisionMonoid ?α ?i)))

being the left-hand side of the theorem, where variables preceded by ? represent holes
which can be filled by concrete terms. In contrast, the target desugars to:

HDiv.hDiv Real Real Real (instHDiv Real (DivInvMonoid.toDiv Real
Real.instDivInvMonoid))

These terms to not match syntactically on the final type class instance. As a result, the
equality saturation rewrite technique is not able to apply the theorem directly to solve step
(1.1). This is despite the theorem being applicable when semantically unifying the terms
with the correct choice of α and i, where by semantic unification we mean Lean’s unification
algorithm, which underlies its notion of equality. A similar problem occurs when we define
the theorem in terms of the function Real.div instead of the / notation. In that case, the
target term would again not match Real.div syntactically, despite unifying semantically.

These examples are indicative of a larger problem when using syntactic rewriting on Lean
expressions: the syntax of terms is generally insufficient to determine semantic equality of
terms, and hence insufficient to determine the applicability of theorems. Thus, it is necessary
to increase syntactic uniformity of semantically (more precisely: definitionally) equal terms,
and to extend equality saturation such that it can perform syntactic conversions between
them. Capturing this notion of equality is however complicated by the fact that it is not
covered purely by syntactic rewrite rules.

Ensuring Preconditions of Theorems. In the previous paragraph, we described the prob-
lem of theorems not being applied despite being applicable. The opposite problem, theorems
wrongly being applied when they should not, can occur when theorems with conditions are
not handled properly. This is relevant in (1.2), which relies on the following theorem:

theorem Gamma_add_one : ∀ s, (s ≠ 0) → s! = s * Gamma s

Accordingly, rewriting s! to s * Gamma s, is only valid if s is not zero. To ensure this pre-
condition, we cannot just perform a simple syntactic check, as there are many terms equiv-
alent to 0, but syntactically distinct from it. Instead, we require a general representation
of facts which can be checked during equality saturation. This representation should also
allow facts, such as s ≠ 0, to be derivable during equality saturation from equivalent facts,
such as s + 0 ≠ 0 * 1. Yet, even then, it is not obvious to decide what even constitutes
a condition of a given theorem. For example, in the theorem div_mul_eq_div_mul_one_div
used in the previous paragraph, the type class argument i should be considered a condition,
despite appearing in the (desugared) theorem body.

In the following sections, we describe an approach tackling these challenges. Besides
focusing on how to handle conditional theorems and encoding them for equality saturation,
we also describe how we decode the information discovered during rewriting to instantiate
the conditional theorems in Lean. While we use Lean as an example throughout, and our
implementation uses Lean, the ideas should naturally transfer to similar systems like Rocq.

, Vol. 1, No. 1, Article . Publication date: October 2025.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

Fig. 2. Overview of our approach: Lean proof goals and theorems are encoded into terms and conditional
rewrite rules in the egg e-graph, which also encodes a representation of facts for reasoning with conditions.
After equality saturation, an explanation is produced, which is decoded into a proof. Extensions of the
core approach are shown in blue. The parenthesized numbers indicate the corresponding sections.

3 Overview
Our approach aims at enabling equational reasoning using pen-and-paper style, by auto-
matically leveraging contextual knowledge. To achieve this, we integrate the interactive
theorem prover Lean with egg, an efficient implementation of equality saturation, an au-
tomated rewriting technique performed over an e-graph. The e-graph data structure stores
a congruence relation by storing syntactically different, but equivalent terms in the same
unique equivalence class (e-class). The set of equivalent terms is grown using equality sat-
uration, which relies on e-matching to apply rewrite rules directly on the e-graph. A major
challenge for encoding Lean expressions into e-graph terms is to ensure that expressions
considered equal by Lean a priori are also treated as equal during equality saturation. In
Lean’s type theory, expressions can be considered definitionally equal, even if they are not
syntactically equal [Carneiro 2019].3 This conflicts with e-graphs’ syntactic view of equality.
Figure 2 shows an overview of our approach, which consists of three main steps.

• Encoding: A given proof goal and theorems are encoded as terms and conditional
rewrite rules and passed to the equality saturation engine egg. This is visualized
by the arrows pointing to the right at the top in Fig. 2 and described in Section 4.

• Equality Saturation: The e-graph is initialized with gadgets for a representation of
facts which enables reasoning with and about the conditions of rewrites. Rewriting is
performed, as visualized by the downwards pointing arrow. If successful, it produces
an explanation consisting of a sequence of rewrite applications.

• Decoding: Finally, the explanation is decoded back into Lean’s expression language
and used to reconstruct a proof of the goal. This is visualized by the arrow pointing
to the left and described in Section 5.

We discuss in Section 4.1 how we encode Lean expressions into e-graph terms. In Sec-
tion 4.2 we discuss how we select suitable theorems for which we can construct sensible
rewrite rules. In Section 4.3 we show how these theorems are encoded as rewrite rules.
3Well-known examples of definitional equality rules include 𝛽- and 𝜂-reduction.

, Vol. 1, No. 1, Article . Publication date: October 2025.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 7

Once we have found a rewrite sequence using equality saturation, we decode it back into
a Lean proof. For this, we first decode e-graph terms back into Lean expressions, which we
discuss in Section 5.1. To justify the equivalences between these decoded expressions, we
instantiate the theorems which were previously encoded as rewrite rules, as discussed in
Section 5.2. For theorems with preconditions, this involves querying the e-graph for further
justifications. Finally, we discuss in Section 5.3 how we compose the individual proof steps
into the complete proof that is verified by Lean.

The blue parts of Fig. 2 represent extensions which are not necessary to the core procedure,
but useful in practice. In Section 6.1, we discuss how to improve our handling of definitional
equality by encoding specific definitional equality rules in the e-graph. Section 6.2 discusses
how we increase the number of suitable theorems by specializing theorems that we cannot
handle in their full generality. And, finally, in Section 6.3 we discuss how we build upon the
ideas of [Kœhler et al. 2024] to integrate intermediate reasoning steps into our approach.

4 Encoding
To leverage e-graphs and equality saturation for conditional rewriting on equational proofs,
we need to define a suitable encoding of theorems, and thus necessarily, of terms. We discuss
the principles of our encoding for Lean, which should transfer to similar systems, like Rocq.

4.1 Encoding Lean Expressions
Terms in Lean are elaborated to expressions of a 𝜆-calculus based on an extension of the
Calculus of Inductive Constructions [Coquand and Huet 1988; Coquand and Paulin 1988].
Lean’s specific theory was first described in [Carneiro 2019], with subsequent changes de-
scribed in [Carneiro 2024; Ullrich 2023]. Figure 3a shows a slightly simplified syntax of this
expression language.

𝑒 ∶∶= app 𝑒 𝑒 | lam 𝑒 𝑒 | forall 𝑒 𝑒
| let 𝑒 𝑒 𝑒 | bvar 𝑛 | fvar 𝑖
| mvar 𝑖 | const 𝑖 ̄ℓ | sort ℓ
| lit 𝑛 | proj 𝑖 𝑛 𝑒

ℓ ∶∶= zero | succ ℓ | …
where 𝑛 ∈ ℕ, 𝑖 ∈ ℐ
and ̄ℓ denotes a list

(a) A simplified view of Lean’s expressions.

𝑡 ∶∶= app 𝑡 𝑡 | lam 𝑡 𝑡 | forall 𝑡 𝑡
| bvar 𝑡 | fvar 𝑡 | mvar 𝑡
| const ̄𝑡 | sort 𝑡 | lit 𝑡
| zero | succ 𝑡 | …
| proof 𝑡 | inst 𝑡 | eq 𝑡 𝑡
| 𝑛 | 𝑖
where 𝑛 ∈ ℕ, 𝑖 ∈ ℐ

(b) The core of our e-graph encoding language.

Fig. 3. Lean’s core expression language and our encoding for representing it in e-graphs

The typical constructs of 𝜆-calculus, such as application, 𝜆-abstraction, ∀-quantification,
and let-abstraction, are represented as expected. As Lean uses a locally-nameless represen-
tation [Charguéraud 2012], bound variables (bvars) are represented using de Bruĳn indices.
The first argument of binders declares the type of the bound variable. Free variables are
represented as named fvars over some ambient set of identifiers ℐ. Metavariables (mvars)
represent named holes in expressions, to be filled by further elaboration steps. Constants
(consts) denote named definitions, like Bool or Nat.add_comm, known to Lean’s environ-
ment. For universe polymorphic constants like the product type Prod, the const construct

, Vol. 1, No. 1, Article . Publication date: October 2025.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

8 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

includes a list ̄ℓ of universe levels. The sort construct represents type universes of a given
level, where sort zero is the universe of propositions which we also denote by Prop. As Lean’s
type theory relies on an infinite hierarchy of type universes with polymorphism, universe
levels require an entire language ℓ of their own. For simplicity, we omit most considerations
of universe levels in this paper. Finally, Lean’s expression language contains two “internal-
izations” introduced in [Ullrich 2023] to improve the computational overhead of common
constructions. First, the lit construct represents natural numbers directly as literals to avoid
the overhead of the usual unary encoding 𝑆 (… (𝑆 0)).4 Second, proj 𝑖 𝑛 𝑒 represents the
application of the 𝑛th projection of the structure type named 𝑖 to the expression 𝑒, which
avoids the overhead of the usual representation based on calling 𝑖’s recursor.

For convenience, we denote sequences of (nested) applications with app. When an expres-
sion is irrelevant or can be inferred from context we sometimes write _, or … if there are
multiple such expressions. Analogously, we may omit type annotations of bound variables.
E-Graph Terms. Our term encoding, shown in Figure 3b, is largely based on Lean’s existing
expression language. However, it has slight modifications to increase syntactic uniformity
by representing some definitionally-equal terms using the same syntax: First, we eliminate
let and proj, as these can always be reduced to other constructs. By the same reasoning,
we could remove lit, yet we keep it to leverage its performance benefits. Second, we add
constructs for proof erasure and type class instance erasure. Proof erasure enables us to
satisfy Lean’s proof irrelevance rule, which states that any two proofs 𝑝1 and 𝑝2 of the same
proposition P are definitionally equal [Carneiro 2024]. We achieve proof irrelevance in an
e-graph syntactically by encoding both 𝑝1 and 𝑝2 as the same term proof P. Type classes are
not built into Lean’s core expression language, but they are a common occurrence in practice.
Thus, we also introduce type class instance erasure to create syntactic equality for different
instances 𝑐1 and 𝑐2 of the same type class C. While there does not exist a rule in Lean’s
type theory which states that all instances of a given type class are definitionally equal,
they almost always are in practice (for example, see [Wieser 2023]). And as our procedure
is safeguarded by Lean’s proof checking, we can safely apply this heuristic without having
to worry about unsoundness. Thus, we encode both 𝑐1 and 𝑐2 using the syntax inst C. The
final construct we add to the term language is the internalization eq 𝑡1 𝑡2 of equivalence
(= or ↔) between terms 𝑡1 and 𝑡2. This construct is used for equivalence reflection in
the e-graph, as discussed in Section 4.3. Finally, it is worth noting that our term language
collapses expressions, universe levels, natural numbers, and identifiers into a single language
for implementation reasons.
Normalization and Encoding Function. We encode Lean expressions into e-graph terms in two
steps. First, a normalization function ‖ ⋅ ‖ eliminates the let and proj constructs. Then, we
map the resulting expression to an e-graph term according to the encoding function J⋅K.

Definition 4.1 (Normalization and Encoding). Let 𝑒 be a Lean expression. Then we define
its normalization ‖𝑒‖ as:

‖𝑒‖ ∶=

⎧{{
⎨{{⎩

‖𝜁(𝑒)‖ if 𝑒 = let 𝑒1 𝑒2 𝑒3
app ‖𝜋𝑖

𝑛‖ … ‖𝑒′‖ if 𝑒 = proj 𝑖 𝑛 𝑒′
ctr ‖𝑒1‖ ‖𝑒2‖ if 𝑒 = ctr 𝑒1 𝑒2,where ctr ∈ {app, lam, forall}
𝑒 otherwise

4The lit construct is also used for string literals, which we omit here for simplicity.

, Vol. 1, No. 1, Article . Publication date: October 2025.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 9

Given a normalized expression 𝑒, the encoding J𝑒K is defined as:

J𝑒K ∶=

⎧{{{{
⎨{{{{⎩

inst J𝐶K if 𝑒 ∶ 𝐶 where 𝐶 is a type class
proof J𝑃 K if 𝑒 ∶ 𝑃 ∶ Prop
eq J𝑙K J𝑟K if 𝑒 = app (const Eq _) _ 𝑙 𝑟
eq J𝑙K J𝑟K if 𝑒 = app (const Iff) 𝑙 𝑟
ctr J𝑒1K J𝑒2K if 𝑒 = ctr 𝑒1 𝑒2,where ctr ∈ {app, lam, forall}
𝑒 otherwise

We write 𝜁(𝑒) for the 𝜁-reduction of 𝑒 which inlines let-bound expressions, and 𝜋𝑖
𝑛 to

denote the 𝑛th projection of the structure type named 𝑖 as in [Ullrich 2023]. Accordingly,
‖𝑒‖ is always definitionally equal to 𝑒. Subsequently, we generally assume expressions to be
normalized, and thus simply write J𝑒K instead of J ‖𝑒‖ K. Also, we sometimes use J⋅K on sets
of expressions or on terms of Lean’s user-facing language. The latter is to be interpreted as
first elaborating the term and calling J⋅K on the resulting expression.

Example 4.2. Let 𝑒 be the expression representing let x ∶= 0; x = 1.
Elaborated, 𝑒 becomes let (const Nat) (lit 0) (app (const Eq _) (const Nat) (bvar 0)) (lit 1).
Then 𝑒 normalizes to ‖𝑒‖ = ‖𝜁(𝑒)‖ = app (const Eq _) (const Nat) (lit 0) (lit 1). This nor-
malized expression encodes to J‖𝑒‖K = eq Jlit 0K Jlit 1K = eq (lit 0) (lit 1).

Encoding Patterns. The encoding function J⋅K turns Lean expressions into e-graph terms.
However, when constructing rewrite rules we need to turn expressions into e-graph patterns.
The e-graph pattern language extends the term language with named pattern variables,
denoted ?𝑖 with 𝑖 ∈ ℐ. When encoding the body 𝑒 of a theorem ∀ ̄𝑥, 𝑒 as a rewrite rule, the
quantified variables ̄𝑥 are encoded as pattern variables. We use “quantified variables” for
𝑥 ∈ ̄𝑥 as an opaque term to abstract over how they are represented in Lean’s expression
language. We define an extension of J⋅K which encodes expressions as patterns given the
quantified variables ̄𝑥:

Definition 4.3 (Encoding for Patterns). For all 𝑥 ∈ ̄𝑥, we extend our encoding J⋅K with
the following case: J𝑥K ∶= ?𝑖𝑥, where 𝑖𝑥 is a unique identifier for 𝑥

We also apply additional normalization steps to theorems’ expressions to better deal
with the fact that terms appearing in rewrite rules cannot themselves be rewritten during
equality saturation. Due to this restriction, rewrite rules’ terms which would be subject to
definitional reductions like 𝛽- and 𝜂-reduction or natural number arithmetic can never be
reduced. Thus, we perform reductions beforehand using an extended normalization function:

Definition 4.4 (Extended Normalization). We write ‖𝑒‖⇝ for the expression obtained from
𝑒 by ‖ ⋅ ‖, while also applying 𝛽- and 𝜂-reduction on all applicable subterms, and evaluating
internalized natural number operators on lits.
As we generally assume expressions to be normalized, we usually write J⋅K instead of J‖ ⋅ ‖⇝K.

Example 4.5. Let 𝑒 be the expression representing (𝜆 x ⇒ x + 𝑦) 𝑦, quantified over vari-
able 𝑦. That is 𝑒 ∶= app (lam (const Nat) (app (const Nat.add) (bvar 0) 𝑦) 𝑦. By 𝛽-reduction,
it normalizes to ‖𝑒‖⇝ = app (const Nat.add) 𝑦 𝑦. Finally, this normalized expression encodes
to J‖𝑒‖⇝K = app (const Nat.add) ?y ?y.

, Vol. 1, No. 1, Article . Publication date: October 2025.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

Transferability. While the translations given above are expressed in terms of Lean’s ex-
pression language, the same principles could be transferred to other ITPs, like Rocq. Lean’s
expression language is sufficiently similar to that of Rocq [Sozeau et al. 2025], such that the
following constructs can be translated as above: app, lam, forall, let, bvar, const, sort, proj.
Rocq’s constructs for inductive types and their constructors can be translated as we do for
constants. The pattern matching construct can be translated opaquely, as we currently do
for recursors in Lean (which are represented as consts), as we do not yet implement any of
their reduction rules. Similar reasoning applies to Rocq’s (co-)fixed point constructs.

More relevant differences appear when considering definitional equality. For example, our
Lean-based encoding erases proofs to capture proof irrelevance. In Rocq, however, proof
irrelevance is not built-in, which necessitates the omission of proof erasure. A more difficult
change would be the handling of type class instances. In Lean, type class instances are
expected to be unique up to definitional equality. This is not the case in Rocq. Thus, type
class instance erasure should be omitted. This, however, causes problems during e-matching
and proof reconstruction, for which we are not currently aware of an obvious solution.

4.2 Selecting Suitable Theorems
Just as Lean and e-graphs use different languages, they also use different objects for rewrit-
ing. In Lean, one uses equational theorems, whereas an e-graph requires rewrite rules. In
the following, we introduce a heuristic approach to select and encode suitable equational
theorems into rewrite rules. The principle guiding this approach is to construct rewrite rules
in a way which makes them amenable to proof reconstruction (see Section 5). In this section,
we start by deriving properties required of theorems to be sensibly encoded as rewrite rules.
Based on these properties, Section 4.3 describes the actual encoding.

For the rest of this section, let 𝑇 denote a theorem of the form ∀ ̄𝑥, 𝐿 ∼ 𝑅, where ∼
represents = or ↔5. We consider only the properties needed to encode a rewrite rule for 𝑇
in the forward direction, that is, from 𝐿 to 𝑅. The reverse direction is analogous. We write
type(𝑒) for the type of an expression 𝑒, which we also apply to sets of expressions. By 𝑒1 ⊑ 𝑒2
we denote that 𝑒1 is a subterm of 𝑒2, with 𝑒1 ⊏ 𝑒2 also requiring 𝑒1 ≠ 𝑒2. Additionally, we
write vars(𝑝) for the set of quantified variables 𝑥 ∈ ̄𝑥 for which a corresponding ?𝑖𝑥 appears
in the e-graph pattern 𝑝, and extend this to sets as: vars(𝑃) ∶= ⋃𝑝∈𝑃 (vars(𝑝)). Note that
generally 𝑥 ⊑ 𝑒 ↮ 𝑥 ∈ vars(J𝑒K) due to aspects of encoding like proof erasure.

Basic Requirements for Rewrite Rules. The simplest form of rewrite rule 𝑝1 ⇒ 𝑝2 matches
a given pattern 𝑝1, producing a substitution 𝜎, and equates the terms 𝜎(𝑝1) and 𝜎(𝑝2). How-
ever, this only works if the pattern variables in 𝑝1 are a superset of the pattern variables in
𝑝2. If we naively translate 𝑇 to a rewrite rule J𝐿K ⇒ J𝑅K, this translates to the requirement:

ℜ1 ∶ vars(J𝑅K) ⊆ vars(J𝐿K)
A common, and practical, restriction on rewrite rules is also to disallow J𝐿K from matching

every possible term. This is the case when 𝐿 is a quantified variable:
ℜ2 ∶ 𝐿 ∉ ̄𝑥

Recoverability of Variables by Type Inference. All further requirements are to ensure that
𝑇 is suitable for proof reconstruction. This is the case if for each rewrite from term J𝑒1K toJ𝑒2K by 𝑇 ’s rewrite rule, we can recover expressions ̄𝑒 for all ̄𝑥, such that 𝑇 (̄𝑒) unifies with
𝑒1 ∼ 𝑒2. In the naive translation of 𝑇 as a rewrite rule (as J𝐿K ⇒ J𝑅K), the only variables we
5Congruence closure and E-graphs work for a more general setting, for any equivalence relation. We could
use Lean’s quotient types to reason about these with equality, but this is outside of the scope of this paper.

, Vol. 1, No. 1, Article . Publication date: October 2025.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 11

can recover are vars(J𝐿K), which are matched during equality saturation. This is insufficient
for two reasons. First, the encoding function J⋅K does not preserve all quantified variables as
pattern variables. For example, quantified variables might be erased as part of proof erasure.
Such variables are then not assigned by matching during equality saturation and cannot
be recovered. This problem is addressed in subsequent sections. Second, not all quantified
variables of 𝑇 need appear in 𝐿 in the first place. For example, in the trivial theorem
∀(𝛼 ∶ Type)(𝑙 ∶ List 𝛼), 𝑙 = 𝑙, the left-hand side 𝑙 does not reference 𝛼, which therefore does
not appear in the rewrite rule ?𝑙 ⇒ ?𝑙. In this example, we can however recover 𝛼 by type
inference on 𝑙. Thus, we consider a variable to be recoverable if it is subject to pattern
matching, or can be recovered from other variables by type inference. Variables recoverable
by type inference from an initial set 𝑋 of variables are captured by the following definition.

Definition 4.6 (Type Closure). We define the “type closure” 𝜔 of variables 𝑋 to be the
smallest fixed point satisfying 𝜔(𝑋) = 𝑋 ∪ {𝑥 | ∃ 𝑦 ∈ 𝜔(𝑋), 𝑥 ∈ vars(type(𝑦))}.
We can then state the requirement that all of 𝑇 ’s variables be recoverable as:

ℜ3 ∶ ̄𝑥 ⊆ 𝜔(vars(J𝐿K))
Handling Propositional Conditions. A common case which is not allowed under the above

requirements are theorems with propositional conditions. For example, the equation 𝑥
𝑥 = 1

holds only if 𝑥 ≠ 0. Thus, the corresponding theorem is ∀(𝑥 ∶ ℝ)(ℎ ∶ 𝑥 ≠ 0), 𝑥
𝑥 = 1, where

ℎ violates requirement ℜ3. To rectify this, we handle propositional variables specially.
Variables for propositional conditions differ from other quantified variables in that we do

not expect them to be recoverable from the theorem’s body. For example, in the theorem
above, we do not expect the proof ℎ ∶ 𝑥 ≠ 0 to be recoverable from the variables in 𝑥

𝑥 = 1.
However, to ensure that a proof for a given propositional condition can be found during
proof reconstruction, we check that the condition is satisfied before applying a rewrite during
equality saturation. For example, we only apply the rewrite for 𝑥

𝑥 = 1 after checking that
𝑥 ≠ 0. For this purpose, we endow theorem 𝑇 with a set of propositional conditions 𝒫(𝑇).

Definition 4.7 (Propositional Conditions). Let 𝒫(𝑇) be the set of variables 𝑥 ∈ ̄𝑥, where:
(1) type(𝑥) ∶ Prop, and
(2) (𝑥 ⊑ 𝐿) → ∃ 𝑔, (𝑥 ⊏ 𝑔 ⊑ 𝐿) ∧ (type(𝑔) ∶ Prop)

The set 𝒫(𝑇) captures those propositional quantified variables which we cannot recover by
pattern matching on J𝐿K or type inference. That is, a variable 𝑥 is a propositional condition if
(1) it is a proof and (2) if it does appear in 𝐿, then it appears nested in another proof term 𝑔.
Propositional variables appearing nested inside other proof terms in 𝐿 cannot be recovered
by pattern matching, as our encoding erases proof terms and only yields proof Jtype(𝑔)K –
thus erasing any reference to 𝑥 or its type. Variables which are not nested can be recovered
by pattern matching and are thus excluded from 𝒫(𝑇). We denote the set of these variables
recoverable by pattern matching, satisfying (1) but not (2), as 𝒫(𝑇).

For theorems 𝑇 with propositional conditions, we construct a rewrite rule such that it
matches both J𝐿K and all P ∈ Jtype(𝒫(𝑇))K. Thus, we rephrase our restrictions as:6

ℜ1 ∶ vars(J𝑅K) ⊆ vars(J𝐿K) ∪ vars(Jtype(𝒫(𝑇))K)
ℜ2 ∶ ({𝐿} ∪ type(𝒫(𝑇))) ∖ ̄𝑥 ≠ ∅
ℜ3 ∶ ̄𝑥 ⊆ 𝜔(vars(J𝐿K) ∪ 𝒫(𝑇)) ∪ 𝒫(𝑇)

6In ℜ3 we write just 𝒫(𝑇), as 𝜔(𝒫(𝑇)) = 𝜔(𝒫(𝑇) ∪ vars(Jtype(𝒫(𝑇))K).
, Vol. 1, No. 1, Article . Publication date: October 2025.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

Handling Type Class Conditions. Much like propositional conditions, type class instances
can be considered as conditions. Unlike propositions, type class instances usually do appear
in the body of a theorem. For example, consider the theorem ∀ 𝛼 (𝑖 ∶ Add 𝛼)(𝑥 ∶ 𝛼), 𝑥+𝑥 =
𝑥+𝑥, where Add is a type class which requires 𝛼 to have a + operator. Here, the instance 𝑖
appears in the body, as 𝑥+𝑥 is syntactic sugar for HAdd.hAdd 𝛼 𝛼 𝛼 (instHAdd 𝛼 𝑖) 𝑥 𝑥. How-
ever, we erase the instance and encode the subterm instHAdd 𝛼 𝑖 as the term inst JHAdd 𝛼 𝛼 𝛼K.
This way, the encoded term only requires matching terms to have an HAdd 𝛼 𝛼 𝛼 instance,
but not necessarily an Add 𝛼 instance as required by the theorem.7 To ensure correctness, we
need to check that an instance for Add 𝛼 can be synthesized before applying the theorem’s
rewrite rule during equality saturation. For this purpose, we endow theorem 𝑇 with a set
of type class conditions, analogous to how we defined the set of propositional conditions.

Definition 4.8 (Type Class Conditions). Let 𝒞(𝑇) be the set of all variables 𝑥 ∈ ̄𝑥, where:
(1) type(𝑥) is a type class, and
(2) (𝑥 ⊑ 𝐿) → ∃ 𝑗, (𝑥 ⊏ 𝑗 ⊑ 𝐿) ∧ (type(𝑗) is a type class)

Again, Condition (2) excludes instances which appear non-nested in the body, as these
can be recovered by matching. We denote this set of variables, satisfying (1) but not (2) as
𝒞(𝑇). The restrictions we impose for type class conditions differ from those of propositional
conditions, as we do not match on type class conditions during equality saturation. Thus,
only ℜ3 is extended while ℜ1 and ℜ2 remain unchanged. We add a fourth restriction to
ensure that all variables appearing in the type class conditions are resolved by matching:

ℜ3 ∶ ̄𝑥 ⊆ 𝜔(vars(J𝐿K) ∪ 𝒫(𝑇)) ∪ 𝒫(𝑇) ∪ 𝒞(𝑇) ∪ 𝒞(𝑇)
ℜ4 ∶ vars(Jtype(𝒞(𝑇))K) ⊆ vars(J𝐿K) ∪ vars(Jtype(𝒫(𝑇))K)

Restriction ℜ4 is necessary to ensure that we obtain complete terms for type classes and
can run synthesis on them during equality saturation.

4.3 Encoding Theorems as Conditional Rewrites
With the requirements for suitable theorems established, we now describe how to construct
their conditional rewrite rules. The main challenge is checking satisfaction of propositional
conditions during equality saturation. We cover this by addressing two questions. (1) How
do we represent proven propositions in the e-graph? (2) How do we check satisfaction of a
propositional condition based on the previous representation.
Representation of Facts. We call proven propositions “facts” and represent them as special
terms in the e-graph using the gadget depicted below:

const app … eq eq …fact

True app const And
… …

At the heart of this gadget lies an e-class which contains the term const True and is used
to represent facts. The e-class is depicted as the dashed box at the top right, which we refer
to as ⊤. This representation of facts follows from the theorem ∀𝑃 ∶ Prop, 𝑃 ↔ (𝑃 = True)
also used in [Bourgeat 2023]. To mark a proposition as proven, it suffices to add it to ⊤.
A special class of facts which we mark in this way is the conjunction of arbitrary facts.
7This is similar to the issue of proof variables appearing nested as covered by Condition 2 of 𝒫(𝑇).

, Vol. 1, No. 1, Article . Publication date: October 2025.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 13

That is, for any given facts 𝑃1 and 𝑃2 we also make 𝑃1 ∧ 𝑃2 a fact by adding an e-node
representing ⊤ ∧ ⊤ to ⊤, as shown above.8 We also equip ⊤ with e-nodes for explicitly
reflecting equalities which are otherwise implicit in the e-graph. Namely, for each e-class 𝑐
in the e-graph, we add an e-node eq 𝑐 𝑐 to ⊤. Thus, for any equivalent terms 𝑡1 and 𝑡2, ⊤
represents eq 𝑡1 𝑡2. Finally, we introduce a fact construct used to syntactically mark terms
which are facts.9 Specifically, we maintain an e-class containing the single e-node fact ⊤.
Thus, for any proposition 𝑃 , if the e-graph contains fact J𝑃 K, then 𝑃 must be a fact.
Conditional Rewrite Rules. Our encoding of theorems without conditions is straightforward.
Let 𝑇 ∶ ∀ ̄𝑥, 𝐿 ∼ 𝑅 be a theorem satisfying the conditions described in Section 4.2. If
𝒫(𝑇) = 𝒞(𝑇) = ∅, then we construct a corresponding rewrite rule simply as J𝐿K ⇒ J𝑅K.

Propositional Conditions. If 𝒫(𝑇) ≠ ∅, then a rewrite for 𝑇 must check for satisfaction
of all 𝑃 ∈ type(𝒫(𝑇)). We check for satisfaction of 𝑃 syntactically by matching the pattern
fact J𝑃 K for each 𝑃 . Thus, a rewrite for 𝑇 must match both J𝐿K and fact J𝑃 K for each
𝑃 ∈ type(𝒫(𝑇)), and merge the e-classes found for 𝐿 and 𝑅. E-matching on a set of patterns
is usually covered by “multipatterns”. However, the egg framework does not support proof
producing multipatterns. Thus, we exploit the properties of our gadget and construct the
single pattern: fact J𝐿 = 𝐿∧⋀𝑃∈type(𝒫(𝑇)) 𝑃 K. The subterm 𝐿 = 𝐿 is used solely to e-match
on 𝐿, and relies on the fact that for any term 𝐿 in the e-graph, J𝐿 = 𝐿K ∈ ⊤. Thus, the
pattern matches 𝐿 and all propositional conditions of 𝑇 , but only if the conditions are facts.

Type Class Conditions. If 𝒞(𝑇) ≠ ∅, then we also need to check that an instance can be
synthesized for each 𝐶 ∈ type(𝒞(𝑇)). For this, we call Lean’s type class synthesis during
equality saturation. Specifically, after e-matching 𝑇 ’s rewrite rule’s pattern we obtain a
substitution 𝜎. Restriction ℜ4 ensures that all quantified variables appearing in each 𝐶
are covered by 𝜎. Thus, 𝜎(J𝐶K) is guaranteed to yield an e-node. As we cannot run type
class synthesis on an e-node, we must first obtain a concrete term represented by the e-
node. We arbitrarily choose the e-node’s representative which we denote repr(𝜎(J𝐶K)). This
choice relies on the heuristic that 𝐶 represents a type, which, aside from propositions and
dependent types, are usually the only members of their e-class. To finally check the synthesis
condition, we decode repr(𝜎(J𝐶K)) into a Lean expression and run Lean’s type class synthesis.
Based on these approaches, we define the conditional rewrite rule for a given theorem.

Definition 4.9 (Conditional Rewrite Rule). A conditional rewrite rule “𝑀 if 𝐺 ⇒ 𝐿 = 𝑅”,
consists of the following objects:

• 𝑀 is a pattern that we match on, yielding a substitution 𝜎 over vars(𝑀).
• 𝐺 is a decidable proposition over 𝜎 which guards the application of the rewrite.
• 𝐿 and 𝑅 are patterns that will be equated under 𝜎 if 𝐺 holds.

For a theorem 𝑇 ∶ ∀ ̄𝑥, 𝐿 ∼ 𝑅 satisfying the restrictions ℜ, we generate the conditional
rewrite rule 𝑀 if 𝐺 ⇒ J𝐿K = J𝑅K, with:

• 𝑀 ∶= fact J𝐿 = 𝐿 ∧⋀𝑃∈type(𝒫(𝑇)) 𝑃 K, and
• 𝐺(𝜎) ∶= ∀𝐶 ∈ type(𝒞(𝑇)), synthesizable(repr(𝜎(J𝐶K)))

Note that 𝑀 contains the propositional conditions and 𝐺 represents the type class condi-
tions. By synthesizable we denote the predicate of a given term having a type class instance,
which we decide by calling Lean’s type class synthesis.
8More precisely, this is app (app (const And) ⊤) ⊤ above.
9We omitted the fact construct from the syntax in Figure 3b, as it is only relevant here.

, Vol. 1, No. 1, Article . Publication date: October 2025.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

Corollaries. Our approach to conditional rewriting has several consequences. First, as facts
are terms in the e-graph, they can be rewritten. Thus, if a rewrite requires condition 𝑃 , but
we only have fact 𝑃 ′, then a theorem like 𝑃 ↔ 𝑃 ′ can derive 𝑃 during equality saturation.
However, it is possible that a condition which would be provable fails to become a fact
simply because it is not a term in the e-graph. Second, as propositions can be reasoned about
equationally as 𝑃 = True, we can extend the set of allowed theorems to any of the form ∀ ̄𝑥, 𝑃
for 𝑃 ∶ Prop. When 𝑃 is not an equivalence, we interpret it as ∀ ̄𝑥, 𝑃 = True. In particular,
this means that ground facts like 0 < 𝜋 are added to the e-graph by the corresponding
ground rewrite rule JTrueK ⇒ J0 < 𝜋K. Finally, the explicit equality construct eq entails that
equivalence of terms cannot purely be checked by comparing their e-classes. This follows as
we reflect equivalences from e-classes to eq facts, but not vice versa. Thus, equivalence of
terms 𝑡1 and 𝑡2 must be checked by eq J𝑡1K J𝑡2K ∈ ⊤. This is contrary to [Bourgeat 2023]
who “materializes” eq nodes into e-node equivalences via ∀ 𝑥 𝑦, ((𝑥 = 𝑦) = True) → 𝑥 = 𝑦.
This does not suffice for our setting, as we require explicit eq nodes for e-matching of facts.

5 Decoding
As a proof checker, Lean only deems a theorem proven if a well-typed proof term is provided.
Thus, to use equivalences discovered by egg, we must reconstruct Lean proof terms from
egg “explanations”. Explanations are proof witnesses for e-graph equivalences.

Definition 5.1 (Explanation). An explanation for an equivalence between terms 𝑡1 and
𝑡𝑛 is a sequence 𝑡1, 𝑗1, 𝑡2, 𝑗2, ..., 𝑗𝑛−1, 𝑡𝑛, where each term 𝑡𝑖 is equivalent to 𝑡𝑖+1 according
to justification 𝑗𝑖. A justification 𝑗𝑖 is a triple (𝑟𝑖, 𝑑𝑖, 𝑝𝑖) of a rewrite rule (identifier) 𝑟𝑖, a
rewrite direction 𝑑𝑖, and a subterm position 𝑝𝑖 in 𝑡𝑖 at which the rewrite is applied.
We reconstruct a proof term for a given explanation in three steps. (1) We decode the
e-graph terms 𝑡𝑖 into Lean expressions 𝑒𝑖. (2) We instantiate the theorems corresponding
to the rewrite rules 𝑟𝑖, such that they justify the equality between the subterms of 𝑒𝑖 and
𝑒𝑖+1 at position 𝑝𝑖. (3) We extend the previously instantiated theorems to proofs of the full
equalities 𝑒𝑖 = 𝑒𝑖+1 and combine them by transitivity to obtain the final proof.

5.1 Decoding E-Graph Terms
The encoding of Lean expressions to e-graph terms via J⋅K erases some subterms. Thus, we
define a decoding function L⋅M from e-graph terms to Lean expressions, which construct ex-
pressions containing holes (mvars), which are filled in by later steps of proof reconstruction.

Definition 5.2 (E-Graph Term Decoding). Let 𝑡 be an e-graph term. Then, we define the
decoding function L⋅M to a Lean expression as follows:

L𝑡M ∶=
⎧{{{{
⎨{{{{⎩

mvar 𝑖 if 𝑡 = inst 𝐶, with fresh 𝑖 and mvar 𝑖 ∶ L𝐶M
mvar 𝑖 if 𝑡 = proof 𝑃 , with fresh 𝑖 and mvar 𝑖 ∶ L𝑃 M
app (const Iff) L𝑡1M L𝑡2M if 𝑡 = eq 𝑡1 𝑡2 and type(𝑡1) ∶ Prop
app (const Eq _) _ L𝑡1M L𝑡2M if 𝑡 = eq 𝑡1 𝑡2 and not type(𝑡1) ∶ Prop
ctr L𝑡1M L𝑡2M if 𝑡 = ctr 𝑡1 𝑡2,where ctr ∈ {app, lam, forall}
𝑡 otherwise

Both type class instances and proof terms are erased during encoding and are turned into
(typed) holes. Equivalences (eq) are turned into ↔ or =, depending on the type of their
terms. This choice is heuristic, as propositions need not be related by ↔ instead of =, even
if it is idiomatic. In our implementation, we backtrack when this choice was incorrect.

, Vol. 1, No. 1, Article . Publication date: October 2025.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 15

5.2 Theorem Instantiation
Let 𝑡, (𝑟, 𝑑, 𝑝), 𝑡′ be one step in an explanation, which rewrites the subterm 𝑢 of 𝑡 to the
subterm 𝑢′ of 𝑡′ by rewrite rule 𝑟, derived from theorem 𝑇 ∶ ∀ ̄𝑥, 𝐿 ∼ 𝑅. We consider here
how to construct a proof for the equivalence of the subterms 𝑢 and 𝑢′ by instantiating 𝑇 .

Let 𝑠 ∶= L𝑢M and 𝑠′ ∶= L𝑢′M. To instantiate 𝑇 such that it produces a proof of 𝑠 ∼ 𝑠′,
we need to assign all variables in ̄𝑥 with expressions ̄𝑎, such that 𝑇 ̄𝑎 ∶ 𝑠 ∼ 𝑠′. We assign
these variables in steps, using the requirements ℜ laid out in Section 4.2. Specifically, by
ℜ3 we know that ̄𝑥 ⊆ 𝜔(vars(J𝐿K)∪𝒫(𝑇))∪𝒫(𝑇)∪𝒞(𝑇)∪𝒞(𝑇). Thus, we can construct an
assignment of each variable 𝑥 ∈ ̄𝑥 depending on which of the following cases it belongs to.

(1) If 𝑥 appears directly in the rule’s left-hand side, 𝑥 ∈ vars(J𝐿K), then we obtain
an assignment for 𝑥 by unification of 𝐿 and 𝑠. They unify as J𝐿K matches J𝑠K
syntactically according to the explanation and by our construction of rewrite rules.

(2) If 𝑥 is a variable for a propositional condition, 𝑥 ∈ 𝒫(𝑇), then we first reconstruct
all variables 𝑦 appearing in the type of 𝑥. By our construction of rewrite rules, in
particular the pattern 𝑀 , all propositional conditions are e-matched during equality
saturation, thus producing an assignment for 𝑦. However, the explanation term 𝑡
only captures an assignment for the pattern J𝐿K. Thus, if 𝑦 does not appear in
vars(J𝐿K), we rely on a record of which e-classes matched against which variables
during equality saturation. Using this record, we obtain a term for 𝑦 by querying
the e-graph for a representative term corresponding to the matched e-class. With
all variables 𝑦 in the type of 𝑥 reconstructed, we now denote the type of 𝑥 as 𝑃 ,
and reconstruct a proof for it, as follows. By our construction of rewrite rules, we
must have matched fact J𝑃 K during equality saturation.We can therefore obtain an
explanation and decode a proof of 𝑃 = True, and assign this to 𝑥.

(3) If 𝑥 ∈ 𝜔(vars(J𝐿K) ∪ 𝒫(𝑇)), then 𝑥 is either assigned by the two prior cases, or we
assign it by type inference on some previously assigned variable 𝑦.

(4) If 𝑥 is a proof term recoverable by unification, 𝑥 ∈ 𝒫(𝑇), then we know thatJtype(𝑥)K ⊑ J𝐿K and variables in type(𝑥) are assigned by (1). The expression 𝑠 must
contain a subterm of type type(𝑥), with variables assigned, at the same position
where 𝑥 appears in 𝐿. Thus, we obtain an assignment of 𝑥 by unifying 𝐿 and 𝑠.

(5) If 𝑥 is a variable for a type class condition, 𝑥 ∈ 𝒞(𝑇), then by ℜ4 we know that we
can use the previous cases to get an assignment for all variables in type(𝑥). To obtain
an assignment for 𝑥 itself, we use type class synthesis on type(𝑥) with all variables
assigned, which must have succeeded during equality saturation.

(6) Finally, if 𝑥 is a type class instance recoverable by unification, 𝑥 ∈ 𝒞(𝑇), then
we know Jtype(𝑥)K ⊑ J𝐿K and variables are assignable by (1). Analogous to (4), 𝑠
contains an expression of type(𝑥), with all variables assigned, at the same position
where 𝑥 appears in 𝐿. Therefore, we assign 𝑥 by unification of 𝐿 and 𝑠.

Example 5.3 (Theorem Instantiation). To give an example of the above procedure, we
choose 𝑇 to be the theorem stating that for lists whose elements have an additive commu-
tative monoid structure, the sum of those elements is preserved under permutation:
∀ {M} [inst : AddCommMonoid M] {l1 l2 : List M} (h : l1.Perm l2), l1.sum = l2.sum

Here, vars(J𝐿K) = {l1, M} (M is an implicit argument to sum), 𝒫(𝑇) = {h}, 𝒞(𝑇) = {inst},
and 𝒫(𝑇) = 𝒞(𝑇) = ∅. We only cover l2 in 𝜔(𝒫(𝑇)), as l2 appears in the type of h.
Now, consider the explanation step J[1, 2, 3].sumK, (𝑟𝑇 ,⇒,⊤), J[3, 2, 1].sumK, where
𝑟𝑇 identifies the rewrite rule of theorem 𝑇 , ⇒ indicates that it was applied in the forward

, Vol. 1, No. 1, Article . Publication date: October 2025.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

direction, and ⊤ denotes that it was applied at the term’s root. The assignment of 𝑇 ’s
variables then proceeds as follows. We assign all variables in vars(J𝐿K) by Case (1). That is,
by unification of [1, 2, 3].sum with l1.sum, we get l1 ↦ [1, 2, 3] and M ↦ Nat. We
assign h by Case (2). Specifically, we first ensure that all variables in the type of h have been
assigned. For l1 and M this is already the case. As l2 ∉ vars(J𝐿K) we obtain the assignment
l2 ↦ [3, 2, 1] by consulting the e-matching record mentioned in Case (2). Thus, we
resolve the type of h as [1, 2, 3].Perm [3, 2, 1]. By our construction of rewrite rules,
the e-graph must contain a proof of J[1, 2, 3].Perm [3, 2, 1]K = JTrueK, from which we
assign h. Finally, we assign inst by Case (5). First, we ensure that all variables in the type
of inst have been assigned, which is already satisfied by M ↦ Nat. Thus, we assign inst
by type class synthesis for AddCommMonoid Nat, which must succeed, as this was checked
during equality saturation.

Above, we assumed that explanation steps are justified by rewrites which follow from
theorems. However, we also use rewrites which are not derived from theorems. First, we use
rewrites to maintain the gadget for representing facts, by adding equivalences between eq 𝑡 𝑡
and JTrueK for all terms 𝑡. This yields explanation steps between 𝑒 = 𝑒 and True for some
expression 𝑒. This step is however trivially provable. And second, we use rewrites rules to
encode certain definitional equalities, such as 𝛽- and 𝜂-reduction. However, when we know
that two terms are definitionally equal, they are provably equal by reflexivity.

5.3 Proof Composition
To construct a full proof, we connect the individual proof steps. Let 𝑡, (𝑟, 𝑑, 𝑝), 𝑡′ be one step
in an explanation, with 𝑒 ∶= L𝑡M and 𝑒′ ∶= L𝑡′M. Then 𝑒 and 𝑒′ only differ at position 𝑝. That
is, for a suitable choice of expression context 𝜖 and subexpressions 𝑠 and 𝑠′, we get 𝑒 = 𝜖(𝑠)
and 𝑒′ = 𝜖(𝑠′). In the previous section, we constructed a proof of the equivalence 𝑠 = 𝑠′.
We now extend this to a proof of 𝑒 = 𝑒′. Intuitively, this extension holds by congruence:

congr ∶ ∀(𝑓1 𝑓2 ∶ 𝛼 → 𝛽)(𝑎1 𝑎2 ∶ 𝛼), (𝑓1 = 𝑓2) → (𝑎1 = 𝑎2) → 𝑓1 𝑎1 = 𝑓2 𝑎2
However, naively applying congruence can fail due to two problems. First, 𝑠 and 𝑠′ may
appear under a binder in 𝑒 and 𝑒′. In that case, the proof of 𝑠 = 𝑠′ needs to be parameterized
to a proof of the form ∀𝑥, 𝑠 = 𝑠′, where 𝑥 generalizes the bound variable. To “zoom in” on
the proof of 𝑠 = 𝑠′, congruence must then be interleaved with function extensionality:

funext ∶ ∀ 𝑓1 𝑓2, (∀𝑥, 𝑓1 𝑥 = 𝑓2 𝑥) → 𝑓1 = 𝑓2
For example, a proof of 𝑓 (𝜆𝑥, 𝑠) = 𝑓 (𝜆𝑥, 𝑠′), based on the subproof ℎ ∶ ∀𝑥, 𝑠 = 𝑠′ would

have the form congr … (rfl ∶ 𝑓 = 𝑓) (funext … (𝜆𝑥, ℎ 𝑥)). Second, the example above only
works for non-dependent functions, by definition of congr. A generalization of congruence
to dependent functions as in [Selsam and de Moura 2016b], where 𝑎1 and 𝑎2 can have non-
definitionally equal types, does not hold in dependent type theory, even when stated over
more permissive heterogeneous equality. One can however construct congruence theorems
specifically for each dependent function, as proposed by the cited work and used in Lean.

As both of these problems are well-known, we rely on the implementation by Kyle Miller
for “congruence quotations”10 to extend proofs of 𝑠 = 𝑠′ to 𝑒 = 𝑒′. The final step in
producing a proof for an entire explanation 𝑡1, 𝑗1, ..., 𝑡𝑛 is then simply to connect all proofsL𝑡1M = L𝑡2M, ..., L𝑡𝑛−1M = L𝑡𝑛M by transitivity of equality.

10See https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/TermCongr.html.

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/TermCongr.html

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 17

Hole Instantiation and Propagation. To produce valid proofs, we need to ensure that
they do not contain holes. Let 𝑡1, 𝑗1, ..., 𝑡𝑛 be an explanation for the proof goal ℒ = ℛ.
When decoding the terms 𝑡1, ..., 𝑡𝑛 into expressions 𝑒1, ..., 𝑒𝑛, any proof terms or type class
instances are turned into holes. For our proof of 𝑒1 = ... = 𝑒𝑛 to be valid, we must therefore
instantiate these holes. We ensure that our proof reconstruction procedure produces hole-
free expressions inductively: As 𝑒1 is the start term, it corresponds to ℒ. Therefore, we
eliminate holes in 𝑒1 by unification with ℒ. Next, we ensure that if 𝑒𝑖 is hole-free, then so is
𝑒𝑖+1 after proof reconstruction. Let 𝑒𝑖 rewrite to 𝑒𝑖+1 by application of theorem 𝑇 ∶ ∀ ̄𝑥, 𝐿 ∼
𝑅 on the subexpressions 𝑠𝑖 and 𝑠𝑖+1 with 𝑒𝑖 ∶= 𝜖(𝑠𝑖) and 𝑒𝑖+1 ∶= 𝜖(𝑠𝑖+1) for a suitable choice
of 𝜖. Each hole in 𝑒𝑖+1 must appear either inside 𝑠𝑖+1, or in the surrounding term given by
𝜖. If a hole appears in 𝜖, then we obtain an instantiation for it from 𝑒𝑖, as 𝑒𝑖 is hole-free and
thus has a hole-free 𝜖. If the hole instead appears in the subterm 𝑠𝑖+1, then we instantiate
holes by unification with 𝑅. Thus, after proof reconstruction 𝑒𝑖+1 is hole-free.

In summary, holes are instantiated either by unification with existing terms which have
not been obtained from decoding (the proof goal and theorems), or by propagation from
previous explanation steps.

6 Extensions
The encoding and decoding of Lean expressions and theorems discussed so far comprises
the core of our approach. However, to improve the applicability our approach in practice,
we add three extensions on top of the core procedure, which we highlight in this section.
We have implemented the core procedure and all extensions in our Lean proof tactic egg.

6.1 Definitional Equalities
As discussed before, one key challenge of using Lean expressions with e-graphs is different no-
tions of equality. Specifically, e-graphs consider equality of terms only up to syntax, whereas
Lean’s underlying notion of definitional equality includes conversion rules between syntacti-
cally distinct terms. It is, therefore, crucial that we make these rules transparent to equality
saturation to avoid getting stuck on syntactically distinct but definitionally equal terms.
Unfortunately, definitional equality rules cannot generally be encoded as simple rewrite
rules. Thus, we handle various definitional equality rules using specialized approaches.

Erasure. The simplest approach to handling definitional equality rules is to erase the
corresponding syntactic construct. We do this for the let and proj constructs in the normal-
ization function ‖ ⋅ ‖, which obviates the need for their definitional equality rules. Similarly,
Lean’s definitionally equality rule for proof irrelevance is implemented by the encoding of
proofs as erased proof terms in the encoding function J⋅K.

Natural Number Literals. Internalized natural number literals (lit) allow for representing
natural numbers avoiding the usual encoding 𝑆 (… (𝑆 0)). However, they introduce syntac-
tically distinct versions for semantically equal terms like lit 0 and const Nat.zero. To bridge
this gap, we add (dynamic) rewrite rules which convert between these representations:

lit 0 ⇔ const Nat.zero
lit ?𝑛 ⇒ app (const Nat.succ) (lit ?(𝑛 − 1)), if 0 < 𝑛

app (const Nat.succ) (lit ?𝑛) ⇒ lit ?(𝑛 + 1)
Lean’s definitional equality also includes rules for basic arithmetic operations on natural

number literals. We cover these by adding the obvious dynamic rewrite rules.

, Vol. 1, No. 1, Article . Publication date: October 2025.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

Bound Variables, 𝛽-Reduction, and 𝜂-Reduction. Arguably, the most important defini-
tional equality rules concern the interaction between application and 𝜆-abstraction:

(𝜆𝑥, 𝑒1) 𝑒2 ⟶𝛽 𝑒1[𝑥 ↦ 𝑒2] (𝜆𝑥, 𝑒 𝑥) ⟶𝜂 𝑒, if 𝑥 is not free in 𝑒
While intuitive, when stated as above, these rules introduce significant challenges when

used with an e-graph. The core problem, which is not unique to 𝛽- and 𝜂-reduction, is the
presence of bound variables. Handling bound variables in e-graphs is notoriously difficult as
their meaning is context-dependent, while any given e-class can be used in many contexts
[Koehler 2022; Schneider et al. 2025; Willsey et al. 2021]. As a result, applying rewrites to
terms containing bound variables encoded as de Bruĳn indices can lead to unwanted shad-
owing. To compensate for this, we implement rewrite rules such that they explicitly check
for collisions, and shift affected bound variables accordingly. For example, to implement a
rewrite rule for 𝜂-reduction using de Bruĳn indices, we introduce a shifting operator ↓:

lam ?𝑡 (app ?𝑓 (bvar 0)) ⇒ ↓(?𝑓), if ?𝑓 does not refer to bvar 0

We implement the semantics of ↓ using small-step rewrite rules such as:
↓ (bvar ?(𝑛 + 1)) ⇒ bvar ?𝑛 ↓ (app ?𝑒1 ?𝑒2) ⇒ app ↓ (?𝑒1) ↓ (?𝑒2)

Following [Anaya Gonzalez et al. 2023], we reduce the number of propagated shifts when
possible. Yet, for proof goals involving binders, these explicit shifting nodes can contribute
overwhelmingly to e-graph explosion. A similar problem occurs for 𝛽-reduction. Implement-
ing a rule for 𝛽-reduction with de Bruĳn variables requires both a shifting and a substitution
operator. We again implement the semantics of substitution by small-step rewrite rules.

𝛿-Reduction and Type Class Projections. The 𝛿-reduction rule of definitional equality
states that any definition is equal to its unfolding. Adding a rewrite rule for each definition
would, however, quickly overwhelm the practical limits of equality saturation. The same
restriction also applies to other tactics in Lean which, therefore, introduces a notion of
transparency to indicate how eagerly definitions should be unfolded. Similarly, we restrict
ourselves to considering unfoldings only for type class projections, for which unfolding may
be expected by the user. For example, consider the following trivial theorem:
example (m n : Nat) : m + n = Nat.add m n := by egg

This equality does not follow syntactically, as the + notation elaborates to an application
of the type class projection HAdd.hAdd. However, the equality is evident by unfolding and
reducing the definition of HAdd.hAdd. Therefore, we generate theorems for reducing applica-
tions of type class projections appearing in the proof goal or given theorems. In the given
example, this means we generate the following equations:
HAdd.hAdd Nat Nat Nat (instHAdd Nat instAddNat) = Add.add Nat instAddNat
Add.add Nat instAddNat = Nat.add

𝜄-Reduction and Structure Projections. The 𝜄-reduction rules capture the reduction se-
mantics for recursors of inductive types. Much like with 𝛿-reduction, it is impractical to
add rewrite rules encoding 𝜄-reduction for each inductive type. In fact, even within Lean it
is generally preferred to reason with equations on definitions, instead of unfolding to recur-
sors. Thus, we again restrict ourselves to special cases of 𝜄-reduction. Specifically, we only
consider the case of applications of structure projections to explicitly constructed structure
terms. For example, this is required in the following trivial theorem:
example (a b : α) : Prod.fst (a, b) = a := by egg

, Vol. 1, No. 1, Article . Publication date: October 2025.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 19

Here, we do not run into problems with notations, as in the previous paragraph, as (,) is
directly elaborated to the constructor Prod.mk. However, the projection Prod.fst unfolds to
an application of Prod’s recursor, which by 𝜄-reduction reduces to the left term a.Therefore,
we generate theorems for reducing applications of structure projections to explicitly con-
structed structure terms. In the given example, we generate the following equation:
∀ α β a b, Prod.fst α β (Prod.mk α β a b) = a

Note that we do not generate an equation for the second projection Prod.snd. We can omit
this rule as the symbol Prod.snd does not appear in the proof goal, or any given theorem.
Thus, any rule matching on Prod.snd could never apply in the first place.

We apply this principle more generally when generating rewrite rules: If a rewrite rule
contains a symbol which does not appear in the proof goal or any other rewrite rule, we do
not include it. This restriction can significantly reduce the number of generated rewrite rules,
for example when considering algebraic structures which can have dozens of projections each.

6.2 Theorem Specialization
So far, we ensured applicability of theorems by implementing definitional conversions. This
involved generating new theorems entirely. However, in some cases we can extend the ap-
plicability of theorems by assigning quantified variables heuristically, thus, specializing it.

Goal Type Specialization. Consider the following theorem over additive groups:
theorem sub_eq_zero (G : Type) [i : AddGroup G] (a b : G) : a - b = 0 ↔ a = b

Encoding the right-hand side of the equivalence yields the pattern eq ?a ?b. The encoding
of the left-hand side, however, yields a term which also references pattern variables ?G and ?i,
as part of the 0 and subtraction terms. As a result, the backward direction of this theorem
cannot be turned into a rewrite rule. This theorem should however be applicable in the
backward direction, as the presence of G is merely an artifact of our encoding. To enable
the backward direction, we heuristically decide that theorems are probably going to be used
on terms of certain types, for example the type of the current proof goal. Based on this
assumption, we specialize the theorem by unifying the type of the left- and right-hand side
with the expected type. For sub_eq_zero this unification assigns G. Thus, if we are proving
a theorem about, for example, the integers, then goal type specialization assigns G := Int.
This eliminates the pattern variable ?G from the encoding of the left-hand side, which leaves
?i as the only variable blocking the backward rewrite rule. However, by specializing G to
Int, we also specialize the type of i to AddGroup Int. We can therefore eagerly synthesize
the instance i, which eliminates ?i from the encoding. In total, this leaves the left-hand side
only with pattern variables ?a and ?b, which allows the backward rewrite rule.

Explosion. For many theorems, goal type specialization does not suffice to enable addi-
tional rewrite directions. Take, for example, the following theorem over additive groups:
theorem neg_add_cancel (G : Type) [i : AddGroup G] (a : G) : -a + a = 0

The encoding of this theorem contains ?G and ?i on both the left- and right-hand side.
However, the backward direction is obviously not applicable, as it requires the “creative
choice” of a. In some cases, it can be useful to automate these creative steps by heuristically
specializing all missing variables with all matching terms in the local context. We call this
approach explosion, due to the combinatorial explosion of specialized theorems which can
occur, when applying this technique. If we apply explosion for neg_add_cancel in a local
context containing additive group elements x, y, and z, we add the equations:

-x + x = 0 -y + y = 0 -z + z = 0

, Vol. 1, No. 1, Article . Publication date: October 2025.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

All of these equations admit rewrite rules in both directions. Explosion must be used with
caution as it can, as the name suggests, explode the number of generated theorems, and
is not suitable for most proof goals. However, we have found it to be useful in the context
of the Equational Theories Project [Bolan et al. 2025]. This project involves proofs using
equations over simple objects, which are connected by equations of (bounded) arbitrary
shapes, like 𝑥∘(𝑦 ∘𝑧) = (𝑥∘𝑥)∘𝑤. These properties make explosion both suitable and useful.
However, when non-trivial creative terms are required, this simple heuristic does not suffice.
Instead, we rely on humans to inject creative guidance into the process.

6.3 Guidance
As an automated procedure, equality saturation has limitations with respect to the (sizes
of) problems it can solve. In [Kœhler et al. 2024], these limitations are investigated for
the use cases of program optimization and equational reasoning. Their results point to “a
general characteristic of equality saturation: either a successful rewrite sequence is found
relatively quickly, or, computational costs explode.” That is, long sequences of rewrites tend
to be infeasible as the size of the e-graph grows too quickly. As a solution, they introduce
the notion of guided equality saturation: Instead of trying to perform an ambitious rewrite
from term 𝑡1 to 𝑡𝑛 in a single run of equality saturation, they introduce intermediate goals
𝑡2, ..., 𝑡𝑛−1 called guides. Then only equality saturations from each 𝑡𝑖 to 𝑡𝑖+1 are performed,
thus replacing a single long run of equality saturation with multiple short runs significantly
reducing the danger of reaching resource limits. To use guidance with our egg tactic, we
introduce a syntax reminiscent of Lean’s calc tactic and resembling the pen-and-paper
equational reasoning style:
example [AddGroup G] (a : G) : -(-a) = a := by

egg calc [add_assoc, zero_add, add_zero, neg_add_cancel]
_ = -(-a) + 0
_ = -(-a) + (-a + a)
_ = 0 + a
_ = a

Aside from breaking up long runs of equality saturation, guides provide two additional
benefits. First, they allow us to write proofs in the pen-and-paper-style closly resembling
textbook proofs, by separating justifications (what we called contextual knowledge in Sec-
tion 2) from the actually interesting reasoning steps. Second, guides make it possible to
inject creative steps into the reasoning, which could not otherwise be derived by equality
saturation. In the example above, the creative steps are adding a magic 0, and rewriting
that 0 to -a + a. The theorem used to justify the second step is neg_add_cancel, which,
as discussed in the previous section, can only rewrite from -a + a to 0 but not vice versa.
Thus, in an unguided attempt at proving the goal, neg_add_cancel could never be applied,
as the e-graph does not contain the relevant term -a + a. However, by providing the guide
-(-a) + (-a + a) explicitly, we add the relevant term to the e-graph, enabling the rewrite.

Guide Terms. It is not uncommon for a proof to require creative terms, such as -a + a
above, without requiring an entire guide to succeed. For this purpose, we introduce guide
terms: terms which are simply added to the e-graph to enable rewrites rules which might
not otherwise apply. Using two guide terms, we can solve the previous example by only
supplying the creative terms:
example [AddGroup G] (a : G) : -(-a) = a := by

egg [add_assoc, zero_add, add_zero, neg_add_cancel] using -(-a) + 0, -a + a

, Vol. 1, No. 1, Article . Publication date: October 2025.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 21

In fact, as stated by Zucker [2025], “the ability to seed the e-graph termbank with useful
terms is crucial for equality saturation”. From a theoretical point of view, this is impor-
tant because equality saturation is not complete for equational reasoning, unless we also
enumerate all terms and add them to the e-graph. More practically, a lack of initial seed
terms can block rewrite rules which we might expect to apply. For example, by default,
trying to use the theorem sub_eq_zero ∶ ∀ 𝑎 𝑏, 𝑎 − 𝑏 = 0 ↔ 𝑎 = 𝑏 on a goal 𝑐 − 𝑑 = 0
will fail due to a lack of seed terms. Specifically, we only add terms J𝑐 − 𝑑K and J0K to the
e-graph, but not J𝑐 − 𝑑 = 0K, which is necessary for sub_eq_zero to match. To improve the
seeding of the e-graph, we automatically add derived guide terms to the e-graph. These
are guide terms which we automatically derive from the proof goal and all rewrite rules,
by considering all closed subterms. Derived guide terms, for example, solve the problem of
applying sub_eq_zero.

7 Example Use Cases
Now we consider concrete use cases to show that our approach is useful in practice by
raising the level of abstraction at which we can reason about equations. These examples
are from different areas of mathematics, and are all based on code from Mathlib, Lean’s
comprehensive mathematical library [Community 2020] containing over a million lines of
formalized mathematics.

7.1 Boolean Algebra
We start by considering boolean algebras, an algebraic structure in lattice theory. As is
common in modern mathematics, this structure is built by a tower of more general structures
that it keeps refining: distributive lattices, lattices, join- and meet- semilattices, partial
orders, etc. The details of these structures are not relevant here, but Mathlib builds these
definitions on top of each other in a type class hierarchy. Each of the definitions has its own
properties and equational lemmas, and reasoning about boolean algebras requires knowing
properties of all of these structures. This modular approach to defining algebraic structures
relies heavily on type class synthesis when it comes to applying theorems from different
parts of the algebraic hierarchy. This is why it is crucial that our encoding represents type
class instances uniformly using erasure, and can rely on type class synthesis to check and
reconstruct the instances as necessary.

Using algebraic hierarchies with our tactic is additionally aided by a syntax for declaring
and hierarchically extending the set of theorems we consider for proofs, which we call the
egg baskets. For example, the following lines hierarchically define a basket for generalized
boolean algebras with their equations sup_inf_sdiff and inf_inf_sdiff. We don’t want to
put all our eggs in one basket, so we define it as an extension of baskets for the underlying
algebraic structures:
egg_basket lattice extends slattice_sup, slattice_inf with ...
egg_basket distrib_lattice extends lattice with ...
egg_basket bool extends distrib_lattice with sup_inf_sdiff, inf_inf_sdiff

Based on this set of theorems, we consider some proofs from Mathlib about boolean
algebras. These are based on Stone [1935], but the postulates defining generalized boolean
algebra are not purely equational. In Mathlib they slighly adapt them to be equational,
and use a different notation, but the equational reasoning is still present in the proofs. An
example is shown on the left of Fig. 4.

, Vol. 1, No. 1, Article . Publication date: October 2025.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

calc
calc
y \ x ⊔ x
_ = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]

egg
egg +bool calc

y \ x ⊔ x
_ = y \ x ⊔ (x ⊔ x ⊓ y)
_ = y ⊓ x ⊔ y \ x ⊔ x
_ = y ⊔ x

Fig. 4. Proof using Lean’s calc tactic on the left and our egg tactic on the right.

calc
calc

z \ (x \ y ⊔ y \ x)
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]

_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
rw [sup_inf_left, sup_comm, sup_inf_sdiff]

_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by
rw [sup_inf_left, sup_comm (z \ y), sup_inf_sdiff]

_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]

egg
egg +bool calc

z \ (x \ y ⊔ y \ x)
_ = (z \ x ⊔ z ⊓ x ⊓ y)

⊓ (z \ y ⊔ z ⊓ y ⊓ x)
_ = z ⊓ (z \ x ⊔ y)

⊓ (z \ y ⊔ z ⊓ y ⊓ x)
_ = z ⊓ (z \ x ⊔ y)

⊓ (z ⊓ (z \ y ⊔ x))
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)

Fig. 5. More complex proof using Lean’s calc tactic on the left and our egg tactic on the right.

The second step of this calculation block uses the tactic ac_rfl, which is a tactic specifi-
cally for reasoning about associativity and commutativity (AC). This is necessary, as reason-
ing with AC is notoriously difficult [Benanav et al. 1987], and, thus, more generic tactics like
Lean’s simplifier cannot generally accommodate these theorems in their procedure. While
equality saturation also has scalability issues when reasoning with AC, in practice our egg
tactic has no problem brute forcing AC on small terms, as shown on the right of Fig. 4.

We observe that, by continuously growing our bool basket with lemmas as we prove
them, we can readily build up to more complicated proofs, such as the Mathlib proof in
Fig. 5. Using our tactic, we can clarify the proof to a more readable form, skipping tedious
bookkeeping steps, and omitting all explanations, as seen on the right in the figure.

We can even omit all equational steps, and prove the theorem using a single guide term:
egg +bool using z \ x ⊔ z ⊓ x ⊓ y

We choose this specific guide term as it is contained in the longest term of the explicit
equational reasoning steps. This tends to be a good heuristic, as expanded terms are likely
to contain the creative terms which are required for rewrites to apply.

7.2 Lie Algebra
Boolean algebra combines many equational theories that are well-studied and have decision
procedures for different aspects, like the simp_ac tactic that specifically deals with AC. In
fact, a variety of algebraic structures have dedicated tactics, like lattices [James and Hinze
2009] or commutative rings [Grégoire and Mahboubi 2005]. Building a new tactic for every
algebraic structure or equational theory, however, will likely not scale. For example, consider
Lie algebras, an algebraic structure that is common in physics. Lie algebras are vector spaces
with a bilinear map [⋅, ⋅], adhering to the so-called Jacobi identity:

∀𝑥 𝑦 𝑧, [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0

, Vol. 1, No. 1, Article . Publication date: October 2025.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 23

As far as we know, there is no decision procedure for words over Lie algebras, nor any
specific tactic for them.11 To evaluate our tactic in this setting, we try to replicate the
equational reasoning of a proof from the textbook by Erdmann and Wildon [2006, Ch. 1]:

As the Lie bracket [−,−] is bilinear, we have
0 = [𝑥 + 𝑦, 𝑥 + 𝑦] = [𝑥, 𝑥] + [𝑥, 𝑦] + [𝑦, 𝑥] + [𝑦, 𝑦] = [𝑥, 𝑦] + [𝑦, 𝑥].

Hence condition (L1) implies
[𝑥, 𝑦] = −[𝑦, 𝑥] for all 𝑥, 𝑦 ∈ 𝐿. (L1’)

After setting up the algebraic definitions and creating a lie basket which includes the
referenced condition L1 ([𝑥, 𝑥] = 0), we can directly write:
theorem L1' : ⁅x, y⁆ = -⁅y, x⁆ := by

have h := by egg +lie calc
0 = ⁅x + y, x + y⁆
_ = ⁅x, x⁆ + ⁅x, y⁆ + ⁅y, x⁆ + ⁅y, y⁆
_ = ⁅x, y⁆ + ⁅y, x⁆

egg +lie [h]
This formalized version does differ from the textbook in a few superficial ways: the Lie

bracket is written using slightly different notation. Our Lean version of the proof of L1’ also
has to explicitly reference the proof of the previous identity h and mention the lie basket in
the final call to egg. While these are all superficial syntactic differences, the proof remains
very close to the textbook. Note that we could have also shortened the proof to just:
egg +lie using ⁅x + y, x⁆ + ⁅x + y, y⁆

Compare this with the proof of the same identity in Mathlib:
theorem lie_skew : -⁅y, x⁆ = ⁅x, y⁆ := by

have h : ⁅x + y, x⁆ + ⁅x + y, y⁆ = 0 := by rw [← lie_add]; apply lie_self
simpa [neg_eq_iff_add_eq_zero] using h
While it is not the goal of the Mathlib proof to replicate the textbook proof, the justifi-

cation is non-obvious and hard to read for a simple identity. It uses a manual rewrite with
an explicit rewrite direction (denoted by ←), as well as a specific simpa incantation of the
simplifier tactic. In aggregate, these cloud the important reasoning steps. As a result, it is
arguably harder to write this proof than our direct translation of the pen-and-paper steps.

Reviewing the Mathlib code of Lie algebras, we find more interesting examples, such as:
theorem neg_lie : ⁅-x, m⁆ = -⁅x, m⁆ := by

rw [← sub_eq_zero, sub_neg_eq_add, ← add_lie]
simp
Again, the Mathlib proof requires explicit rewriting in different directions and separate

calls to the explicit rewriting and simplifier tactics. In the textbook this theorem is not men-
tioned at all, as it is “obvious” by the bilinearity of the Lie bracket. Our tactic also makes
this “obvious”: it proves it with egg +lie without any additional steps. Notably, this proof
relies on reasoning over the entire proposition ⁅-x, m⁆ = -⁅x, m⁆ instead of just the individ-
ual subterms, as the proof begins by applying sub_eq_zero : ∀ a b, a - b = 0 ↔ a = b.
Crucially, this theorem only applies as a result of the extensions of goal type specialization
and derived guide terms, and it is not solved by other tactics using e-graphs.

11In fact, we chose this example precisely because of this, as suggested by a colleague working in Mathlib.

, Vol. 1, No. 1, Article . Publication date: October 2025.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

egg
theorem map_tail_trans (a : Vec α (m + 1)) (v : Vec (Vec α (m + 2)) (n + 1)) :

map tl (trans (tl a :: map tl (map tl v))) = trans (map tl (map tl v)) := by
induction m <;> cases a
all_goals egg +rise [*]

theorem rule2 (as : Vec (Vec α m) n) : transpose (transpose as) = as := by
induction n <;> cases m <;> cases as <;> try cases ‹Vec _ (_ + 1)›
all_goals egg +rise [*, fill_nil (_ :: _)]

theorem rule6 (f : α → β) (g : β → γ → γ) (init : γ) (as : Vec α n) :
reduceSeq (λ a b => g (f a) b) init as = (reduceSeq g init ∘ map f) as := by

induction as generalizing init
all_goals egg +rise [*]

Fig. 6. Using egg, we can automate the equational steps of the formalization by [Hagedorn et al. 2020].

7.3 Functional Array Programs
To investigate the applicability of our tactic in a non-algebraic domain, we consider theorems
for functional array programs. Specifically, we consider results from [Hagedorn et al. 2020],
which develops and formalizes rules for rewrite-based program optimization. These rules are
defined over the Rise language, which includes fixed-length vector types. These vectors are
formalized in Agda using the canonical representation of fixed-length vectors by a dependent
type. The Agda proofs of the developed rules generally involve induction or case splitting,
followed by many manual equational proof steps. In our formalization of the same proofs,
we find that we can fully automate the equational proof steps with egg. That is, out of the
17 theorems formalized, all take the form of the proofs shown in Figure 6.

The proofs start by induction and/or cases bashing, and all resulting goals are proven
by egg using the accumulated rise egg basket. Notably, these proofs involve rewriting over
the dependent Vec type. In some cases, this involves rewriting vector lengths at the type
level – however, only up to definitional equality.12 Moreover, rule6 involves rewriting over
terms with binders, which requires 𝛽- and 𝜂-reduction. This is handled transparently by
egg. We find only one case, rule2, where the equational reasoning is not fully automated,
as the theorem fill_nil is not suitable as a rewrite rule and is instantiated manually.

7.4 Binomial Theorem
As a final use case, we go back to the motivational example from Section 2, the proof of
the binomial theorem from Rotman [2006]. Motivated by Kœhler et al. [2024], we consider
the equational steps of the proof of Proposition 1.15, which they could not prove with
guided equality saturation. The issue are implicit preconditions, discussed in Section 2: the
textbook proof uses terms like 1

𝑛−𝑟+1 , which are not in ℕ in general and require casting to
ℝ for the desired arithmetic. Additionally, and crucial to our proof, many reasoning steps
are only valid subject to conditions like 𝑟 ≤ 𝑛+ 1. That is, they need conditional rewriting.

As the preconditions of casting and arithmetic are not fundamental to the theorem at
hand, it is not immediately clear which conditions need to be justified to solve the goal. In
the proof below, we therefore employ a feature of our egg tactic which allows us to postpone
12Our tactic will also rewrite non-definitional equalities at the type level. However, our current implemen-
tation of proof reconstruction would not be able to reconstruct proofs for these steps.

, Vol. 1, No. 1, Article . Publication date: October 2025.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25

the proofs of propositional conditions until after equality saturation. That is, the necessary
preconditions that cannot be solved automatically during equality saturation are presented
to the user as proof obligations. This is possible by a trivial modification of the proof
reconstruction procedure. Thus, we can conveniently handle the preconditions required for
the rewrites that Kœhler et al. [2024] could not. We do, however, still have to be explicit
that we are reasoning in ℝ instead of ℕ and explicit cast between these types. Aside from
these technical differences, our proof follows the structure of the proof in [Rotman 2006].

The first line in the proof enables propositional conditions of rewrites to be surfaced as
proof obligations. The line containing the egg invocation references egg baskets with facts
about casts between ℕ and ℝ and arithmetic on ℝ, as well as lemmas about the Γ-function
which generalizes factorial to ℝ. The rest of the proof proceeds essentially verbatim from
the textbook, except that we first and finally cast (↑) to and from ℝ. Finally, the last line
shows the first steps of proving the proof obligations produced by egg. These are analogous
to the sub-proofs ℎ1, ..., ℎ10 in Figure 1b. The proof obligations are conditions like 𝑟 ≤ 𝑛+1
for casting subtractions like 𝑛 + 1 − 𝑟, or 𝑛 ≠ 0 for performing arithmetic with division.

In total, we generate 15 proof obligations, all of which can be discharged by suitable tactics
in one or two lines. Combining our methods with specific theory solvers could potentially
automatically solve all of these obligations, but that is beyond the scope of this paper.

egg
set_option egg.subgoals true

egg +cast +real calc [Gamma_nat_eq_factorial, Gamma_add_one]
↑(n ! / ((r - 1)! * (n - r + 1)!) + n ! / (r ! * (n - r)!))
_ = n! / ((r - 1)! * (n - r + 1)!) + n! / (r! * (n - r)!)
_ = n! / ((r - 1)! * (n - r)!) * (1 / (n - r + 1) + 1 / r)
_ = n! / ((r - 1)! * (n - r)!) * ((r + (n - r + 1)) / (r * (n - r + 1)))
_ = n! / ((r - 1)! * (n - r)!) * ((n + 1) / (r * (n - r + 1)))
_ = (n + 1)! / (r! * (n + 1 - r)!)
_ = ↑((n + 1)! / (r ! * (n + 1 - r)!))

all_goals try first | (norm_cast; done) | (norm_cast; omega) | ...

7.5 Limitations and Comparisons
The previous examples showcase our egg tactic. Naturally, it has practical limitations, which
we briefly discuss here. We also compare to the behaviour of related Lean tactics.

When it comes to collecting “contextual knowledge” in the form of egg baskets, it can
be difficult to judge which theorems should be included. For example, some proofs about
boolean algebras use theorems defined over generalized Coheyting algebras. Without suffi-
cient knowledge about the problem domain and its formalization, discovering such theorems
is difficult. This problem is, for example, handled much better by Lean’s grind tactic, which
contains a large database of all possibly suitable theorems. In contrast, our current imple-
mentation of the egg tactic only handles on the order of < 100 theorems. This situation can
be improved in the future by using smart premise selection procedures, as in [Blanchette
et al. 2011; Czajka and Kaliszyk 2018], or by more sophisticated e-matching procedures
based on discrimination trees.

Discovering missing theorems with our tactic is additionally complicated by it only being
suitable for closing proof goals, not making partial progress on them, as some other tactics

, Vol. 1, No. 1, Article . Publication date: October 2025.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 Marcus Rossel, Rudi Schneider, Thomas Kœhler, Michel Steuwer, and Andrés Goens

do. While partial progress can be trivially implemented using extraction on e-graphs, the
notion of sketch guides from [Kœhler et al. 2024] presents a more promising approach.

One approach we have found for addressing failing invocations of egg is to rely on guided
equality saturation. By using egg calc to iteratively specify more intermediate steps, users
can hone in on problematic reasoning steps and unveil missing theorems or capabilities.

Our practical limit on the number of theorems reflects the fact that equality saturation
can easily fail by explosively growing the e-graph, as discussed in [Kœhler et al. 2024]. The
same holds for the sizes of explanations. To keep the duration of proof reconstruction on the
order of seconds, we currently limit the length of explanations we handle to 200 steps. We
have various examples where egg exceeds this length, which can vary significantly with slight
changes to the initial conditions. Using guides to reduce the length of equality saturation
runs, and thus explanation length, is also frail, as discussed in [Kœhler et al. 2024]. However,
using tree-structured instead of flattened explanations, as we currently do, can significantly
reduce the sizes of explanations, thus directly addressing this problem [Flatt et al. 2022].

Finally, in the context of interactive theorem proving our tactic is sometimes slow, taking
on the order of seconds to complete difficult proofs. Therefore, keeping long-running calls
to egg in proof scripts is costly and other means of proof persistence should be considered.
Other tactics like simp and grind usually are faster completing in less than one second.

Comparison. We tried two other tactics on the three use cases we presented in the sub-
sections before. The “simplifier” tactic simp13 greedily rewrites with given equations. The
grind tactic [de Moura and Morrison 2025] is a novel proof tactic in Lean using e-graphs,
e-matching, congruence closure, and solvers for specific theories. We provided the same in-
puts to these tactics as to our egg tactic. However, in our usage of grind we cannot count
out user error entirely, as grind sometimes requires the user to decide how theorems should
be turned into patterns for e-matching, which our tactic does not require.

Running simp on our use cases fails on all reasoning steps, besides some steps of the L1’
theorem. Most of the time, this is because simp exceeds set resource limits by falling into
loops on non-oriented theorems like associativity and commutativity.

The grind tactic proves some, but not all, reasoning steps. For the Boolean Algebra
example in Fig. 5 two steps are not proven by grind. Similarly, grind fails to prove the
final step of the L1’ theorem, and fails on the second theorem entirely. For the Binomial
Theorem, grind fails on three steps and can only prove the other steps when we provide
the proof of the necessary preconditions as input, whereas our egg tactic discovers these
preconditions automatically.

8 Related Work
Proof Tactics. The egg-based proof tactics in Lean [Kœhler et al. 2024] and Rocq [Bourgeat

2023] are most closely related to our work. We strictly improve upon the former, which also
encodes Lean terms, but does not handle binders, type classes, or conditional rewrites. The
Rocq tactic imposes restrictions on how symbols can appear in terms, and also does not
admit binders. It also allows for conditional rewrites, but does not cover how theorems are
encoded as rewrite rules, or how this affects proof reconstruction. Other tactics, focussing
more specifically on congruence closure, are Lean’s cc or Rocq’s congruence tactics. A
more expansive approach is chosen by Lean’s recent grind tactic [de Moura and Morrison
2025], which uses e-graphs with e-matching, congruence closure and theory solvers (similar
to SMT solvers). The tactic is good at deriving facts, and performing case analysis, at the
13https://leanprover-community.github.io/extras/simp.html

, Vol. 1, No. 1, Article . Publication date: October 2025.

https://leanprover-community.github.io/extras/simp.html

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 27

cost of limiting the length of discoverable rewrite sequences. The SMTCoq plug-in [Ekici
et al. 2017] provides tactics which rely on existing SMT solvers like CVC4 [Barrett et al.
2011]. Notably, their proof reconstruction uses computational reflection, instead of direct
proof term construction, by implementing a certified checker of proof certificates. It can
also generate proof obligations for uncertified steps. Hammer for Coq [Czajka and Kaliszyk
2018] includes premise selection and covers a larger fragment of Coq’s (Rocq’s) calculus,
but uses the output of external SMT solvers merely as hints for a hand-crafted, backward
reasoning proof reconstruction procedure. Isabelle’s Sledgehammer [Blanchette et al. 2011]
reconstructs saturation proofs from external solvers like Z3 [De Moura and Bjørner 2008] and
Vampire [Riazanov and Voronkov 2002]. Agda’s user-defined rewrite-rule extensions [Cockx
2019] also have many conceptual similarities with our work. As these extend computational
reductions in the core language itself, they are also more conservative: these extensions only
support equality constraints as pre-conditions, and have stronger conditions on the usage
of the variables on the LHS of the rewrite for the RHS, which we relax (cf. Section 6.2.)

Equality Saturation and E-Graphs. E-Graphs were introduced in the 1980s [Nelson 1980]
and have long been used for SMT solvers. They have seen a resurgence with equality satu-
ration [Tate et al. 2009] and the subsequent efficient implementation of egg [Willsey et al.
2021]. Our work builds heavily on the idea of guided equality saturation subsequently intro-
duced by [Kœhler et al. 2024]. Handling disequalities and context-sensitive facts efficiently
is explored by dis-/equality graphs [Zakhour et al. 2025] and colored e-graphs [Singher and
Itzhaky 2024], respectively. These ideas are complementary to our approach in this paper. A
different approach is taken by egglog [Zhang et al. 2023], combining datalog with e-graphs.
However, it does not yet support proof production, as in e-graphs [Flatt et al. 2022].

Formalization of Pen-and-Paper Proofs. The goal of a document that fits both as a
human-readable argument and as computer-checkable proof was already formulated in AU-
TOMATH [de Bruĳn 1968]: “Our system should check a kind of language that comes as
close as possible to what we write in ordinary mathematics” [De Bruĳn 1994]. Inspired by
this, Mizar [Trybulec and Blair 1985], and later Isar [Wenzel 2002] made further progress at
aligning the syntax of their languages with the languages in intuitive handwritten proofs.

In contrast to the previously stated work, the systems mathNat [Humayoun 2010] and
Naproche [Cramer et al. 2009] work on reading human-written proof texts in a controlled
but natural language, instead of a programming language typical syntax. And finally, the
more recent, Draft, Sketch, Prove system [Jiang et al. 2023], intends to use informal human-
written texts, interpreted by a machine learning model, as guidance of what an automated
reasoning engine should explore.

9 Conclusion
We presented an approach allowing to write proofs in an interactive theorem prover using
a familiar pen-and-paper equational reasoning style found in mathematics. Our implemen-
tation as a Lean tactic, encodes suitable theorems as conditional rewrite rules dealing with
propositional conditions as well as type class instances. We pass proof goals and rewrite rules
to the egg equality saturation engine which attempts to perform the proof by rewriting with
equality saturation. Once a proof has been found, we decode the produced explanation and
reconstruct a valid Lean proof. We evaluated our approach on three case studies, demon-
strating that we enable the desired pen-and-paper style, while proving theorems that could
not be proven with the existing simp or grind tactics.

, Vol. 1, No. 1, Article . Publication date: October 2025.

References
Emmanuel Anaya Gonzalez, Cole Kurashige, Aditya Giridharan, and Polikarpova Nadia. 2023. Optimiz-

ing Beta Reduction in E-Graphs. (2023). https://pldi23.sigplan.org/details/egraphs-2023-papers/12/
Optimizing-Beta-Reduction-in-E-Graphs EGRAPHS 2023.

Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew
Reynolds, and Cesare Tinelli. 2011. cvc4. In International Conference on Computer Aided Verification.
Springer, 171–177.

Dan Benanav, Deepak Kapur, and Paliath Narendran. 1987. Complexity of Matching Problems. J. Symb.
Comput. 3, 1/2 (1987), 203–216. doi:10.1016/S0747-7171(87)80027-5

Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. 2011. Automatic proof and disproof in
Isabelle/HOL. In Frontiers of Combining Systems: 8th International Symposium, FroCoS 2011, Saarbrücken,
Germany, October 5-7, 2011. Proceedings 8. Springer, 12–27.

Matthew Bolan, Joachim Breitner, Jose Brox, Mario Carneiro, Martin Dvořák, Andrés Goens, Aaron Hill,
Harald Husum, Zoltan Kocsis, Bruno Le Floch, Lorenzo Luccioli, Alex Meiburg, Pietro Monticone, Gio-
vanni Paolini, Bernhard Reinke, David Renshaw, Marcus Rossel, Cody Roux, Jérémy Scanvic, Shreyas
Srinivas, Anand Rao Tadipatri, Terence Tao, Vlad Tsyrklevich, Daniel Weber, and Fan Zheng. 2025. The
Equational Theories Project: Advancing Collaborative Mathematical Research at Scale. In preparation.

Thomas Bourgeat. 2023. Specification and verification of sequential machines in rule-based hardware languages.
Massachusetts Institute of Technology.

Robert S. Boyer and J Strother Moore. 1973. Proving Theorems about LISP Functions. In Proceedings of the
3rd International Joint Conference on Artificial Intelligence. Standford, CA, USA, August 20-23, 1973, Nils J.
Nilsson (Ed.). William Kaufmann, 486–493. http://ijcai.org/Proceedings/73/Papers/053.pdf

Mario Carneiro. 2019. The Type Theory of Lean. Master’s thesis. Carnegie Mellon University.
Mario Carneiro. 2024. Lean4Lean: Towards a formalized metatheory for the Lean theorem prover. arXiv

e-prints abs/2403.14064 (2024), arXiv–2403.
Arthur Charguéraud. 2012. The locally nameless representation. Journal of automated reasoning 49 (2012),

363–408.
Jesper Cockx. 2019. Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules. In 25th

International Conference on Types for Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway
(LIPIcs, Vol. 175), Marc Bezem and Assia Mahboubi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2:1–2:27. doi:10.4230/LIPICS.TYPES.2019.2

The Mathlib Community. 2020. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association
for Computing Machinery, New York, NY, USA, 367–381. doi:10.1145/3372885.3373824

Thierry Coquand and Gerard Huet. 1988. The Calculus of Constructions. Information and Computation 76
(1988), 95–120.

Thierry Coquand and Christine Paulin. 1988. Inductively defined types. In International Conference on
Computer Logic. Springer, 50–66.

Marcos Cramer, Bernhard Fisseni, Peter Koepke, Daniel Kü hlwein, Bernhard Schröder, and Jip Veld-
man. 2009. The naproche project controlled natural language proof checking of mathematical texts. In
International Workshop on Controlled Natural Language. Springer, 170–186.

Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for dependent type theory. Journal
of automated reasoning 61, 1 (2018), 423–453.

NG de Bruĳn. 1968. Automath: a language for mathematics. (1968).
Nicolaas Govert De Bruĳn. 1994. A survey of the project AUTOMATH. In Studies in Logic and the

Foundations of Mathematics. Vol. 133. Elsevier, 141–161.
Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In International conference on

Tools and Algorithms for the Construction and Analysis of Systems. Springer, 337–340.
Leonardo de Moura and Kim Morrison. 2025. The Lean Language Reference: The grind tactic. https:

//lean-lang.org/doc/reference/latest/The--grind--tactic/#grind
Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language.

In Automated Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event,
July 12-15, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12699), André Platzer and Geoff
Sutcliffe (Eds.). Springer, 625–635. doi:10.1007/978-3-030-79876-5_37

David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: a theorem prover for program checking. J.
ACM 52, 3 (2005), 365–473. doi:10.1145/1066100.1066102

https://pldi23.sigplan.org/details/egraphs-2023-papers/12/Optimizing-Beta-Reduction-in-E-Graphs
https://pldi23.sigplan.org/details/egraphs-2023-papers/12/Optimizing-Beta-Reduction-in-E-Graphs
https://doi.org/10.1016/S0747-7171(87)80027-5
http://ijcai.org/Proceedings/73/Papers/053.pdf
https://doi.org/10.4230/LIPICS.TYPES.2019.2
https://doi.org/10.1145/3372885.3373824
https://lean-lang.org/doc/reference/latest/The--grind--tactic/#grind
https://lean-lang.org/doc/reference/latest/The--grind--tactic/#grind
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/1066100.1066102

Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark Barrett.
2017. SMTCoq: A plug-in for integrating SMT solvers into Coq. In International Conference on Computer
Aided Verification. Springer, 126–133.

Karin Erdmann and Mark J Wildon. 2006. Introduction to Lie algebras. Vol. 122. Springer.
Oliver Flatt, Samuel Coward, Max Willsey, Zachary Tatlock, and Pavel Panchekha. 2022. Small Proofs

from Congruence Closure. In 22nd Formal Methods in Computer-Aided Design, FMCAD 2022, Trento, Italy,
October 17-21, 2022, Alberto Griggio and Neha Rungta (Eds.). IEEE, 75–83. doi:10.34727/2022/ISBN.978-
3-85448-053-2_13

Benjamin Grégoire and Assia Mahboubi. 2005. Proving Equalities in a Commutative Ring Done Right in
Coq. In Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK,
August 22-25, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3603), Joe Hurd and Thomas F.
Melham (Eds.). Springer, 98–113. doi:10.1007/11541868_7

Bastian Hagedorn, Johannes Lenfers, Thomas Kundefinedhler, Xueying Qin, Sergei Gorlatch, and Michel
Steuwer. 2020. Achieving high-performance the functional way: a functional pearl on expressing high-
performance optimizations as rewrite strategies. Proc. ACM Program. Lang. 4, ICFP, Article 92 (Aug.
2020), 29 pages. doi:10.1145/3408974

Muhammad Humayoun. 2010. Mathnat-mathematical text in a controlled natural language. Special issue:
Natural Language Processing and its… (2010).

Daniel WH James and Ralf Hinze. 2009. A Reflection-based Proof Tactic for Lattices in Coq.. In Trends in
Functional Programming. 97–112.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timoth ée Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023. Draft, Sketch, and Prove: Guiding Formal The-
orem Provers with Informal Proofs. In The Eleventh International Conference on Learning Representa-
tions , ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https://openreview.net/forum?id=
SMa9EAovKMC

Thomas Koehler. 2022. A domain-extensible compiler with controllable automation of optimisations. Ph.D.
Dissertation.

Thomas Kœhler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and Michel Steuwer. 2024.
Guided Equality Saturation. Proc. ACM Program. Lang. 8, POPL (2024), 1727–1758. doi:10.1145/3632900

Charles Gregory Nelson. 1980. Techniques for Program Verification. PhD thesis. Stanford University.
Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-Producing Congruence Closure. In Term Rewriting

and Applications, 16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings
(Lecture Notes in Computer Science, Vol. 3467), Jürgen Giesl (Ed.). Springer, 453–468. doi:10.1007/978-3-
540-32033-3_33

Lawrence C. Paulson. 1993. Isabelle: The Next 700 Theorem Provers. CoRR cs.LO/9301106 (1993). https:
//arxiv.org/abs/cs/9301106

Alexandre Riazanov and Andrei Voronkov. 2002. The design and implementation of VAMPIRE. AI
communications 15, 2-3 (2002), 91–110.

Rocq Dev Team. 2025. The Rocq Prover. doi:10.5281/zenodo.15149629
Joseph J Rotman. 2006. A first course in abstract algebra: with applications. Pearson.
Rudi Schneider, Marcus Rossel, Amir Shaikhha, Andrés Goens, Thomas Kundefinedhler, and Michel

Steuwer. 2025. Slotted E-Graphs: First-Class Support for (Bound) Variables in E-Graphs. Proc. ACM
Program. Lang. 9, PLDI, Article 223 (June 2025), 23 pages. doi:10.1145/3729326

Daniel Selsam and Leonardo de Moura. 2016a. Congruence Closure in Intensional Type Theory. In Au-
tomated Reasoning - 8th International Joint Conference, ĲCAR 2016, Coimbra, Portugal, June 27 - July 2,
2016, Proceedings (Lecture Notes in Computer Science, Vol. 9706), Nicola Olivetti and Ashish Tiwari (Eds.).
Springer, 99–115. doi:10.1007/978-3-319-40229-1_8

Daniel Selsam and Leonardo de Moura. 2016b. Congruence closure in intensional type theory. In Auto-
mated Reasoning: 8th International Joint Conference, ĲCAR 2016, Coimbra, Portugal, June 27–July 2, 2016,
Proceedings 8. Springer, 99–115.

Eytan Singher and Shachar Itzhaky. 2024. Easter Egg: Equality Reasoning Based on E-Graphs with Multiple
Assumptions. In Formal Methods in Computer-Aided Design, FMCAD 2024, Prague, Czech Republic, October
15-18, 2024, Nina Narodytska and Philipp Rümmer (Eds.). IEEE, 70–83. doi:10.34727/2024/ISBN.978-
3-85448-065-5_13

Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Nielsen, Nicolas Tabareau, and Théo
Winterhalter. 2025. Correct and Complete Type Checking and Certified Erasure for Coq, in Coq. J.
ACM 72, 1, Article 8 (Jan. 2025), 74 pages. doi:10.1145/3706056

https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_13
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_13
https://doi.org/10.1007/11541868_7
https://doi.org/10.1145/3408974
https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=SMa9EAovKMC
https://doi.org/10.1145/3632900
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1007/978-3-540-32033-3_33
https://arxiv.org/abs/cs/9301106
https://arxiv.org/abs/cs/9301106
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.1145/3729326
https://doi.org/10.1007/978-3-319-40229-1_8
https://doi.org/10.34727/2024/ISBN.978-3-85448-065-5_13
https://doi.org/10.34727/2024/ISBN.978-3-85448-065-5_13
https://doi.org/10.1145/3706056

Marshall H Stone. 1935. Postulates for Boolean algebras and generalized Boolean algebras. American Journal
of Mathematics 57, 4 (1935), 703–732.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: a New Approach
to Optimization. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 264–276.

Andrzej Trybulec and Howard A. Blair. 1985. Computer Assisted Reasoning with MIZAR. In Proceedings
of the 9th International Joint Conference on Artificial Intelligence. Los Angeles, CA, USA, August 1985,
Aravind K. Joshi (Ed.). Morgan Kaufmann, 26–28. http://ijcai.org/Proceedings/85-1/Papers/006.pdf

Sebastian Andreas Ullrich. 2023. An Extensible Theorem Proving Frontend. Ph.D. Dissertation. Dissertation,
Karlsruhe, Karlsruher Institut für Technologie (KIT), 2023.

Markus Wenzel. 2002. Isabelle, Isar - a versatile environment for human readable formal proof documents. Ph.D.
Dissertation. Technical University Munich, Germany. http://tumb1.biblio.tu-muenchen.de/publ/diss/
in/2002/wenzel.pdf

Freek Wiedĳk (Ed.). 2006. The Seventeen Provers of the World, Foreword by Dana S. Scott. Lecture Notes in
Computer Science, Vol. 3600. Springer. doi:10.1007/11542384

Eric Wieser. 2023. Multiple-inheritance hazards in dependently-typed algebraic hierarchies. In International
Conference on Intelligent Computer Mathematics. Springer, 222–236.

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
2021. Egg: Fast and extensible equality saturation. Proceedings of the ACM on Programming Languages 5,
POPL (2021), 1–29.

George Zakhour, Pascal Weisenburger, Jahrim Gabriele Cesario, and Guido Salvaneschi. 2025. Dis/Equality
Graphs. Proc. ACM Program. Lang. 9, POPL (2025), 2282–2305. doi:10.1145/3704913

Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock,
and Max Willsey. 2023. Better Together: Unifying Datalog and Equality Saturation. Proceedings of the
ACM on Programming Languages 7, PLDI (2023), 468–492.

Philip Zucker. 2025. Omelets Need Onions: E-graphs Modulo Theories via Bottom-up E-matching.
arXiv:2504.14340 [cs.PL] https://arxiv.org/abs/2504.14340

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

http://ijcai.org/Proceedings/85-1/Papers/006.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
https://doi.org/10.1007/11542384
https://doi.org/10.1145/3704913
https://arxiv.org/abs/2504.14340
https://arxiv.org/abs/2504.14340

	Abstract
	1 Introduction
	2 Challenges of Pen-and-Paper-Style Reasoning in Current Interactive Theorem Provers
	3 Overview
	4 Encoding
	4.1 Encoding Lean Expressions
	4.2 Selecting Suitable Theorems
	4.3 Encoding Theorems as Conditional Rewrites

	5 Decoding
	5.1 Decoding E-Graph Terms
	5.2 Theorem Instantiation
	5.3 Proof Composition

	6 Extensions
	6.1 Definitional Equalities
	6.2 Theorem Specialization
	6.3 Guidance

	7 Example Use Cases
	7.1 Boolean Algebra
	7.2 Lie Algebra
	7.3 Functional Array Programs
	7.4 Binomial Theorem
	7.5 Limitations and Comparisons

	8 Related Work
	9 Conclusion
	References

