
The LIFT Project
Performance Portable Parallel Code Generation via Rewrite Rules

Michel Steuwer — michel.steuwer@glasgow.ac.uk

mailto:michel.steuwer@glasgow.ac.uk

2

What are the problems LIFT tries to tackle?

• Parallel processors everywhere

• Many different types: CPUs, GPUs, …

• Parallel programming is hard

• Optimising is even harder

• Problem: 
No portability of performance!

CPU

GPU

FPGA

Accelerator

3

Case Study: Parallel Reduction in OpenCL

• Summing up all values of an array

• Comparison of 7 implementations by Nvidia

• Investigating complexity and efficiency of optimisations5.1 a case study of opencl optimizations 119

First OpenCL Kernel

Second OpenCL Kernel

Figure 5.1: The first OpenCL kernel is executed by four work-groups in
parallel: work-group 0, work-group 1, work-group 2,

work-group 3. The second OpenCL kernel is only executed
by the first work-group. The bold lines indicate synchronization
points in the algorithm.

the work-group to compute the final result. The vast majority of the
work is done in the first phase and the input size to the second phase
is comparably small, therefore, the limited exploitation of parallelism
in the second phase does not effect overall performance much. For
this reason we will discuss and show only the differences and opti-
mizations in the first OpenCL kernel.

We will follow the methodology established in [82] and evaluate
the performance of the different versions using the measured GPU
memory bandwidth as our metric. The memory bandwidth is com-
puted by measuring the runtime in seconds and dividing it by the
input data size which is measured in gigabytes. As we use the same
input data size for all experiments, the bandwidth results shown in
this section directly correspond to the inverse of the measured run-
time. By investigating the memory bandwidth of the GPU memory,
we can see which fraction of the maximum memory bandwidth avail-
able has been utilized. Using the memory bandwidth as evaluation
metric for the parallel reduction is reasonable as the reduction has a
very low arithmetic intensity and its performance is, therefore, bound
by the available GPU memory bandwidth.

All following implementations are provided by Nvidia as part of
their software development kit and presented in [82]. These imple-
mentations have originally been developed for Nvidia’s Tesla GPU
architecture [109] and not been updated by Nvidia for more recent
GPU architectures. Nevertheless, the optimizations discussed are still
beneficial on more modern Nvidia GPUs– as we will see. All perfor-
mance numbers in this section have been measured on a Nvidia GTX
480 GPU featuring the Nvidia Fermi architecture [157].

4

Parallel reduction with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

5

Parallel reduction with OpenCL

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Kernel function executed in parallel by multiple work-items

Work-items are identified by a unique global id

6

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Work-items are grouped into work-groups Local id within work-group

Parallel reduction with OpenCL

7

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Big, but slow global memory
Small, but fast local memory

Memory barriers for consistency

Parallel reduction with OpenCL

8

kernel void reduce(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

Functionally correct implementations in OpenCL are hard!

Parallel reduction with OpenCL

Potential Deadlock!

9

kernel void reduce0(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);
 // do reduction in local memory
 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];

 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
 // write result for this work-group to global memory
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

1. Version: Unoptimised Implementation Parallel Reduction

10

kernel void reduce1(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);

 for (unsigned int s=1; s < get_local_size(0); s*= 2) {
 // continuous work-items remain active
 int index = 2 * s * tid;
 if (index < get_local_size(0)) {
 l_data[index] += l_data[index + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

2. Version: Avoid Divergent Branching

11

kernel void reduce2(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);

 // process elements in different order
 // requires commutativity
 for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) {
 if (tid < s) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

3. Version: Avoid Interleaved Addressing

12

kernel void reduce3(global float* g_idata, global float* g_odata,
 unsigned int n, local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 // performs first addition during loading
 if (i + get_local_size(0) < n)
 l_data[tid] += g_idata[i+get_local_size(0)];
 barrier(CLK_LOCAL_MEM_FENCE);

 for (unsigned int s=get_local_size(0)/2; s>0; s>>=1) {
 if (tid < s) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0];
}

4. Version: Increase Computational Intensity per Work-Item

kernel void reduce4(global float* g_idata, global float* g_odata,
 unsigned int n, local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 if (i + get_local_size(0) < n)
 l_data[tid] += g_idata[i+get_local_size(0)];
 barrier(CLK_LOCAL_MEM_FENCE);

 # pragma unroll 1
 for (unsigned int s=get_local_size(0)/2; s>32; s>>=1) {
 if (tid < s) { l_data[tid] += l_data[tid + s]; }
 barrier(CLK_LOCAL_MEM_FENCE); }

 // this is not portable OpenCL code!
 if (tid < 32) {
 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

5. Version: Avoid Synchronisation inside a Warp

kernel void reduce5(global float* g_idata, global float* g_odata,
 unsigned int n, local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 if (i + get_local_size(0) < n)
 l_data[tid] += g_idata[i+get_local_size(0)];
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) { l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) { l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

6. Version: Complete Loop Unrolling

kernel void reduce6(global float* g_idata, global float* g_odata,
 unsigned int n, local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize = WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) { l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) { l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) { l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) { l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) { l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) { l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) { l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) { l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) { l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0) g_odata[get_group_id(0)] = l_data[0]; }

7. Version: Fully Optimised Implementation

• Optimising OpenCL is complex

• Understanding of target hardware required

• Program changes not obvious

• Is it worth it? …

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

kernel
void reduce0(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i = get_global_id(0);
 l_data[tid] = (i < n) ? g_idata[i] : 0;
 barrier(CLK_LOCAL_MEM_FENCE);

 for (unsigned int s=1;
 s < get_local_size(0); s*= 2) {
 if ((tid % (2*s)) == 0) {
 l_data[tid] += l_data[tid + s];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

Reduction Case Study Conclusions

Unoptimized Implementation Fully Optimized Implementation16

17

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results Nvidia

• … Yes! Optimising improves performance by a factor of 10!

• Optimising is important, but …

18

• … unfortunately, optimisations in OpenCL are not portable!

• Challenge: how to achieving portable performance?

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

130 code generation using patterns

Hardware Bandwidth Limit

0

50

100

150

200

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

cu
BLA

S

Ba
nd

w
id

th
 (G

B/
s)

(a) Nvidia’s GTX 480 GPU.

Hardware Bandwidth Limit

0

100

200

300

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7

clB
LA

S

Ba
nd

w
id

th
 (G

B/
s)

(b) AMD’s HD 7970 GPU.

Hardware Bandwidth Limit

Failed Failed Failed
0

10

20

30

Im
pl.

 1
Im

pl.
 2

Im
pl.

 3
Im

pl.
 4

Im
pl.

 5
Im

pl.
 6

Im
pl.

 7
MKL

Ba
nd

w
id

th
 (G

B/
s)

(c) Intel’s E5530 dual-socket CPU.

Figure 5.2: Performance of differently optimized implementations of the
parallel reduction

Performance Results AMD and Intel

19

LIFT: Performance Portable GPU Code Generation via Rewrite Rules

Ambition: automatic generation of Performance Portable code

134 code generation using patterns

High-level Expression

OpenCL Program

OpenCL Patterns

Algorithmic Patterns

Low-level Expression

Algorithmic choices &
Hardware optimizations

map

reduce

iterate

split

join

vectorize toLocal

map-local

map-workgroup

vector units

workgroups

local memory

barriers

...Dot product Vector reduction

Hardware Paradigms

Code generation

High-level
programming

reorder...

...

...

Exploration with
rewriting rules

BlackScholes

Figure 5.3: Overview of our code generation approach. Problems expressed
with high-level algorithmic patterns are systematically trans-
formed into low-level OpenCL patterns using a rule rewriting
system. OpenCL code is generated by mapping the low-level pat-
terns directly to the OpenCL programming model representing
hardware paradigms.

We argue that the root of the problem lies in a gap in the system
stack between the high-level algorithmic patterns on the one hand
and low-level hardware optimizations on the other hand. We propose
to bridge this gap using a novel pattern-based code generation tech-
nique. A set of rewrite rules systematically translates high-level algo-
rithmic patterns into low-level hardware patterns. The rewrite rules
express different algorithmic and optimization choices. By systemati-
cally applying the rewrite rules semantically equivalent, low-level ex-
pressions are derived from high-level algorithm expressions written
by the application developer. Once derived, high-performance code
based on these expressions can be automatically generated. The next
section introduces an overview of our approach.

5.2 overview of our code generation approach

The overview of our pattern-based code generation approach is pre-
sented in Figure 5.3. The programmer writes a high-level expression
composed of algorithmic patterns. Using a rewrite rule system, we
transform this high-level expression into a low-level expression consist-
ing of OpenCL patterns. At this rewrite stage, algorithmic and opti-
mization choices in the high-level expression are explored. The gen-
erated low-level expression is then fed into our code generator that
emits an OpenCL program which is, finally, compiled to machine code

[ICFP 2015]

[GPGPU 2016]
[CASES 2016]

[CGO 2017]

Walkthrough kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

20

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

sum(vec) = reduce(+, 0, vec)

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

21

①

②

③

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)

22

① Algorithmic Primitives (a.k.a. algorithmic skeletons)

map(f, x):

zip(x, y):

reduce(+, 0, x):

split(n, x):

join(x):

iterate(f, n, x):

reorder(σ, x):

x1 x2 x3 x4 x5 x6 x7 x8 f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7) f(x8)⟼

⟼x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1+x2+x3+x4+x5+x6+x7+x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 ⟼

x1 x2 x3 x4 x5 x6 x7 x8 ⟼ xσ(1) xσ(2) xσ(3) xσ(4) xσ(5) xσ(6) xσ(7) xσ(8)

x1 x2 x3 x4 x5 x6 x7 x8f(… f()…)

(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) (x6, y6) (x7, y7) (x8, y8)

23

① High-Level Programs

scal(a, vec) = map(λ x ↦ x*a, vec)

asum(vec) = reduce(+, 0, map(abs, vec))

dotProduct(x, y) = reduce(+, 0, map(*, zip(x, y)))

gemv(mat, x, y, α, β) =
map(+, zip(
map(λ row ↦ scal(α, dotProduct(row, x)), mat),
scal(β, y)))

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

24

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

25

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

rewrite rules code generation

Walkthrough

sum(vec) = reduce(+, 0, vec)

• Provably correct rewrite rules

• Express algorithmic implementation choices

26

② Algorithmic Rewrite Rules

map f �map g ! map (f � g)
Map fusion rule:

reduce f z ! reduce f z � reducePart f z

reducePart f z ! iterate n (reducePart f z)

reducePart f z ! reducePart f z � reorder
reducePart f z ! join �map (reducePart f z) � split n

Reduce rules:

map f ! join �map (map f) � split n
Split-join rule:

27

② OpenCL Primitives

mapGlobal Work-items

mapWorkgroup

mapLocal
Work-groups

mapSeq

reduceSeq
Sequential implementations

Memory areastoLocal toGlobal,

mapVec
splitVec joinVec

,
, Vectorisation

Primitive OpenCL concept

28

② OpenCL Rewrite Rules

map f ! mapWorkgroup f | mapLocal f | mapGlobal f | mapSeq f

Map rules:

mapLocal f ! toGlobal (mapLocal f)mapLocal f ! toLocal (mapLocal f)

Local/ global memory rules:

map f ! joinVec �map (mapVec f) � splitVec n
Vectorisation rule:

reduceSeq f z �mapSeq g ! reduceSeq (� (acc, x). f (acc, g x)) z
Fusion rule:

• Express low-level implementation and optimisation choices

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

29

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log2(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Walkthrough

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

30

①

②

③

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel

vecSum = reduce (+) 0

rewrite rules code generation

Walkthrough

31

③ Pattern based OpenCL Code Generation

mapGlobal f xs
for (int g_id = get_global_id(0); g_id < n;
 g_id += get_global_size(0)) {
 output[g_id] = f(xs[g_id]);
}

reduceSeq f z xs
T acc = z;
for (int i = 0; i < n; ++i) {
 acc = f(acc, xs[i]);
}

...
...

• Generate OpenCL code for each OpenCL primitive

• A lot more details about the code generation implementation can be
found in our CGO 2017 paper

https://github.com/michel-steuwer/publications/raw/master/2017/CGO-2017.pdf

kernel
void reduce6(global float* g_idata,
 global float* g_odata,
 unsigned int n,
 local volatile float* l_data) {
 unsigned int tid = get_local_id(0);
 unsigned int i =
 get_group_id(0) * (get_local_size(0)*2)
 + get_local_id(0);
 unsigned int gridSize =
 WG_SIZE * get_num_groups(0);
 l_data[tid] = 0;
 while (i < n) {
 l_data[tid] += g_idata[i];
 if (i + WG_SIZE < n)
 l_data[tid] += g_idata[i+WG_SIZE];
 i += gridSize; }
 barrier(CLK_LOCAL_MEM_FENCE);

 if (WG_SIZE >= 256) {
 if (tid < 128) {
 l_data[tid] += l_data[tid+128]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (WG_SIZE >= 128) {
 if (tid < 64) {
 l_data[tid] += l_data[tid+ 64]; }
 barrier(CLK_LOCAL_MEM_FENCE); }
 if (tid < 32) {
 if (WG_SIZE >= 64) {
 l_data[tid] += l_data[tid+32]; }
 if (WG_SIZE >= 32) {
 l_data[tid] += l_data[tid+16]; }
 if (WG_SIZE >= 16) {
 l_data[tid] += l_data[tid+ 8]; }
 if (WG_SIZE >= 8) {
 l_data[tid] += l_data[tid+ 4]; }
 if (WG_SIZE >= 4) {
 l_data[tid] += l_data[tid+ 2]; }
 if (WG_SIZE >= 2) {
 l_data[tid] += l_data[tid+ 1]; } }
 if (tid == 0)
 g_odata[get_group_id(0)] = l_data[0];
}

32

①

②

③

164 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 join � map-warp

�

4 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 1 �
5 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 2 �
6 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 4 �
7 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 8 �
8 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 16 �
9 join � map-lane (reduce-seq (+) 0) � split 2 � reorder-stride 32

10
�
� split 64 �

11 join � map-local (reduce-seq (+) 0) � split 2 � reorder-stride 64 �
12 join � toLocal (map-local (reduce-seq (+) 0)) �
13 split (blockSize/128) � reorder-stride 128
14

�
� split blockSize

Listing 5.13: Expression resembling the seventh implementation of parallel
reduction presented in Listing 5.7.

Before we look at how OpenCL code is generated, we discuss one
additional optimization: fusion of patterns.

5.4.3.3 Systematic Fusion of Patterns

Back in Chapter 4 in Section 4.3 we discussed how the sum of ab-
solute values (asum) can be implemented in SkelCL. Two algorithmic
skeletons, reduce and map, were composed to express this application
as shown in Equation (5.17).

asum ~x = reduce (+) 0
�

map (| . |) ~x
�

(5.17)

where: |a| =

�
a if a > 0

-a if a < 0

When evaluating the performance of the SkelCL implementation, we
identified a problem: SkelCL treats each algorithmic skeleton sepa-
rately, thus, forcing the map skeleton to write a temporary array back
to global memory and then read it again for the next computation,
which greatly reduces performance. The temporary array could be
avoided, but in the library approach followed by SkelCL it is difficult
to implement a generic mechanism for fusing algorithmic skeletons.

By using our pattern-based code generation approach presented in
this chapter together with the rewrite rules, we are now able to ad-
dress this issue. Our fusion rule (shown in Figure 5.7g) allows to fuse
two patterns into one, thus, avoiding intermediate results. Figure 5.9
shows how we can derive a fused version for calculating asum from
the high-level expression written by the programmer.

160 code generation using patterns

1 vecSum = reduce � join � map-workgroup
�

2 join � toGlobal (map-local (map-seq id)) � split 1 �
3 iterate 7 (join � map-local (reduce-seq (+) 0) � split 2) �
4 join � toLocal (map-local (map-seq id)) � split 1
5

�
� split 128

Listing 5.8: Expression resembling the first two implementations of parallel
reduction presented in Listing 5.1 and Listing 5.2.

these are systematically derived from a single high-level expression
using the rewrite rules introduced in this section. Therefore, these
implementations can be generated systematically by an optimizing
compiler. The rules guarantee that all derived expressions are seman-
tically equivalent.

Each OpenCL low-level expression presented in this subsection is
derived from the high-level expression Equation (5.16) expressing par-
allel summation:

vecSum = reduce (+) 0 (5.16)

The formal derivations defining which rules to apply to reach an ex-
pression from the high-level expression shown here are presented in
Appendix B for all expressions in this subsection.

first pattern-based expression Listing 5.8 shows our first
expression implementing parallel reduction. This expression closely
resembles the structure of the first two implementations presented in
Listing 5.1 and Listing 5.2. First the input array is split into chunks
of size 128 (line 5) and each work-group processes such a chunk of
data. 128 corresponds to the work-group size we assumed for our
implementations in Section 5.1. Inside of a work-group in line 4 each
work-item first copies a single data item (indicated by split 1) into the
local memory using the id function nested inside the toLocal pattern to
perform a copy. Afterwards, in line 3 the entire work-group performs
an iterative reduction where in 7 steps (this equals log2(128) follow-
ing rule 5.7e) the data is further divided into chunks of two elements
(using split 2) which are reduced sequentially by the work-items. This
iterative process resembles the for-loops from Listing 5.1 and List-
ing 5.2 where in every iteration two elements are reduced. Finally,
the computed result is copied back to the global memory (line 2).

The first two implementations discussed in Section 5.1 are very sim-
ilar and the only difference is which work-item remains active in the
parallel reduction tree. Currently, we do not model this subtle dif-
ference with our patterns, therefore, we cannot create an expression
which distinguishes between these two implementations. This is not
a major drawback, because none of the three investigated architec-

rewrite rules code generation

Walkthrough

33

Case Study: Matrix Multiplication

A

B

C

A x B =
map(λ rowA ↦
map(λ colB ↦
dotProduct(rowA, colB)

, transpose(B))
, A)

34

Tiling as a Rewrite Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map(vectorize(f)) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12) � tile(m, k, transpose(B))

13) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16) � tile(m, k, transpose(B))

17) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

35

Register Blocking as a Rewrite Rules

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map(vectorize(f)) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12) � tile(m, k, transpose(B))

13) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16) � tile(m, k, transpose(B))

17) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

36

Register Blocking as a Rewrite Rules

3.4 Summary
Our functional IR together with its GPU extensions allows
for a very precise description of which GPU features should
be exploited, e. g., how the computation should be mapped
to the thread hierarchy using the di↵erent variants of map.
This enables the compiler to represent di↵erent variations of
the matrix multiplication example using a unified IR, where
each variant exploits a di↵erent set of GPU features.

It is easy to generate code using the OpenCL specific
patterns, as optimization decisions are encoded explicitly and
each primitive directly corresponds to a templated OpenCL
code. In the next section, we discuss how optimizations are
expressed as sequences of provably correct rewrite rules.

4. Optimizing by Rewriting
This section discusses how we optimize programs repre-
sented in our IR and transform them into forms exploiting
GPU features explicitly. Furthermore, we show how our en-
coding of optimizations as sequences of rewrite rules enables
us to freely combine optimizations and apply them automat-
ically in an exploration process described in section 5.

4.1 Rewrite Rules
A rewrite rule is a well-defined transformation of an expres-
sion represented in our IR. Each rule encodes a simple – and
provably correct – rewrite. For instance, the fusion rule com-
bines two successive map primitives into a single one:

map(f) � map(g)! map(f � g)

We currently have a few dozens of rewrite rules encoded in
our system. For space reasons, we will only present a few
here in detail, but all rewrite rules are very similar in style.
The correctness of these rules has been proven following the
same methodology as presented in [18].

In addition to the rules describing purely algorithmic
transformations, there are also rules lowering the algorith-
mic primitives to OpenCL specific primitives. For example,
the algorithmic map primitive can be mapped to any of the
OpenCL specific map primitives, i. e., mapWorkgroup, mapLo-

cal, or mapSeq, as long as the OpenCL thread hierarchy is
respected.

Interesting interactions exist between the algorithmic and
OpenCL specific rules. For example, the algorithmic split-

join rule transforms a map primitive following a divide-and-
conquer style:

map(f)! join � map(map(f)) � split(n)

Here the split(n) primitive divides the input into chunks
of size n, which are processed by the outer map and each
single chunk is processed by the inner map. Finally, the
join primitive collects and appends all results. This rule
transforms a flat one-dimensional map primitive into a nested
expression which can easily be mapped to the OpenCL thread
hierarchy, e. g.:

join � mapWorkgroup(mapLocal(f)) � split(n)

This interaction allows our compiler to explore di↵erent
strategies of mapping algorithmic expressions to the GPU
hardware. In the example above, the parameter n directly
controls the amount of work performed by the workgroups
and local threads which is an important tuning factor.

In the following section, we discuss how these simple
rewrite rules are combined to express rich optimizations
which are crucial for applications like matrix multiplication.

A

n

C

B

m

k

k

(a) Tiling
A C

B

(b) Register Blocking

Figure 6: Example of two classical optimizations for matrix
multiplication.

4.2 Tiling
Tiling is a common optimization used on CPUs and GPUs [5,
12, 14] and is highly beneficial for our matrix-matrix mul-
tiplication use case application. The idea behind tiling is to
increase data locality by fitting small portions of data into
local memory. Then the computations are performed while
the data is in the fast memory region.

In the context of matrix multiplication, we want to create
2D tiles for the output matrix C. Our compiler achieves this
by splitting each input matrix along both dimensions, so that
they are decomposed into multiple tiles, which are multiplied
in local memory. Figure 6a visualizes this situation. The
highlighted tiles of matrices A and B are multiplied in local
memory and summed up to compute a tile of matrix C.

Building the tiles Interestingly, we do not need to create
new constructs to build the tiles and can reuse the exact same
primitives described in [18]. We reuse map and split, and the
high-level function transpose presented earlier, to produce a
tiled representation of matrix A (or B):

tile(n, k, A) =
map(map(transpose) � split(k) � transpose) � split(n, A)

The first split(n) divides A into chunks of n rows. The second
split(k) after the transpose divides each chunk into 2D tiles
of size n ⇥ k. To get the original orientation back, we apply
transpose to each tile. The reuse of our unmodified primitives
illustrate the power of composition and shows that larger
building block can be build on top of a very small set of
primitives. This makes the design of the compiler easier since
the compiler only need to handle a very small set of primitives
and does not need to know about higher-level building blocks
such as transpose or tile.

Copying to local memory Once the tiles built, we need to
copy them to local memory. Scalar values can be copied using
the identity function (id(x) = x). From this, an array is copied
by composing map and id. To copy a two dimensional tile, we
use id nested inside two maps:

copy2D = map(map(id))

Composing this function with the toLocal primitive, an array
is copied into local memory:

toLocal(copy2D)

Combining everything If we apply these basic principles
to both matrices and use zip to combine them, we obtain
the second expression shown in figure 7. The tile function is

5 2016/1/19

registerBlocking =

Map(f)) Join() �Map(Map(f)) � Split(k)
Map(a 7! Map(b 7! f(a, b)))) Transpose() �Map(b 7! Map(a 7! f(a, b)))

Map(f � g)) Map(f) �Map(g)

Map(Reduce(f))) Transpose() �Reduce((acc, x) 7! Map(f) � Zip(acc, x))

Map(Map(f))) Transpose() �Map(Map(f)) � Transpose()
Transpose() � Transpose()) id

Reduce(f) �Map(g)) Reduce((acc, x) 7! f(acc, g(x)))

Map(f) �Map(g)) Map(f � g)

37

Exploration Strategy

Rewritten Expression

High-Level Expression
Macro Rules

1.2

BlockedMultiply(A,B) =

Join() �Map(Transpose())�

Map(
����!
rowsA 7!

Map(
��!
colB 7!

Transpose()�
Reduce(((�!acc, rowElemPair) 7!
Map(p 7! p. 0 + p. 1 ⇤ rowElemPair. 1) $

Zip(�!acc, rowElemPair. 0)

) $ Zip(Transpose() $
����!
rowsA,

��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

1.4

BlockedMultiply(A,B) =

Join() �Map(Transpose())�

Map(
����!
rowsA 7!

Map(
��!
colB 7!

Transpose()�
Reduce(((�!acc, rowElemPair) 7!
Map(p 7! p. 0 + p. 1 ⇤ rowElemPair. 1) $

Zip(�!acc, rowElemPair. 0)

) $ Zip(Transpose() $
����!
rowsA,

��!
colB)

) � Transpose() $B
) � Split(blockFactor) $A

1.1

T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1
A ⇤B =

Map(
���!
rowA 7!

Map(
��!
colB 7!

DotProduct(
���!
rowA,

��!
colB)

) � Transpose() $B
) $A

1.3
T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

38

Rewritten Expression

High-Level Expression
Macro Rules

Map to OpenCL

Lowered Expression

1.3
T iledMultiply(A,B) =

Untile()�

Map(
����!
aRows 7!

Map(
���!
bCols 7!

Reduce((acc, pairOfT iles) 7!
acc+ pairOfT iles. 0 ⇤ pairOfT iles. 1

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.1

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.3

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.2
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

Exploration Strategy

39

Rewritten Expression

High-Level Expression
Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

1.3.2
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(sizeN, sizeK) $B

) � T ile(sizeM, sizeK) $A

1.3.2.5
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.1

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.2

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.3

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.4

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

1.3.2.6

T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

Exploration Strategy

40

Rewritten Expression

High-Level Expression
Macro Rules

Map to OpenCL

Lowered Expression

Parameter Mapping

Specialised Expression

OpenCL Code

Code Generation

1 kernel mm amd opt(global float ⇤ A, B, C,

2 int K, M, N) {
3 local float tileA [512]; tileB [512];

4

5 private float acc 0; ...; acc 31;

6 private float blockOfB 0; ...; blockOfB 3;

7 private float blockOfA 0; ...; blockOfA 7;

8

9 int lid0 = local id(0) ; lid1 = local id(1) ;

10 int wid0 = group id(0); wid1 = group id(1);

11

12 for (int w1=wid1; w1<M/64; w1+=num grps(1)) {
13 for (int w0=wid0; w0<N/64; w0+=num grps(0)) {
14

15 acc 0 = 0.0f; ...; acc 31 = 0.0f;

16 for (int i=0; i<K/8; i++) {
17 vstore4(vload4(lid1⇤M/4+2⇤i⇤M+16⇤w1+lid0,A), 16⇤lid1+lid0, tileA);

18 vstore4(vload4(lid1⇤N/4+2⇤i⇤N+16⇤w0+lid0,B), 16⇤lid1+lid0, tileB);

19 barrier (...) ;

20

21 for (int j = 0; j<8; j++) {
22 blockOfA 0 = tileA[0+64⇤j+lid1⇤8]; ...; blockOfA 7 = tileA[7+64⇤j+lid1⇤8];
23 blockOfB 0 = tileB[0 +64⇤j+lid0]; ...; blockOfB 3 = tileB[48+64⇤j+lid0];

24

25 acc 0 += blockOfA 0 ⇤ blockOfB 0; ...; acc 28 += blockOfA 7 ⇤ blockOfB 0;

26 acc 1 += blockOfA 0 ⇤ blockOfB 1; ...; acc 29 += blockOfA 7 ⇤ blockOfB 1;

27 acc 2 += blockOfA 0 ⇤ blockOfB 2; ...; acc 30 += blockOfA 7 ⇤ blockOfB 2;

28 acc 3 += blockOfA 0 ⇤ blockOfB 3; ...; acc 31 += blockOfA 7 ⇤ blockOfB 3;

29 }
30 barrier (...) ;

31 }
32

33 C[0+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 0; ...; C[0+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 28;

34 C[16+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 1; ...; C[16+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 29;

35 C[32+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 2; ...; C[32+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 30;

36 C[48+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+0⇤N+lid0]=acc 3; ...; C[48+8⇤lid1⇤N+64⇤w0+64⇤w1⇤N+7⇤N+lid0]=acc 31;

37 } } }

1.3.2.5
T iledMultiply(A,B) =

Untile()�

MapWrg(1)(
����!
aRows 7!

MapWrg(0)(
���!
bCols 7!

ReduceSeq((acc, pairOfT iles) 7!
acc+ toLocal(pairOfT iles. 0)

⇤ toLocal(pairOfT iles. 1)

) $ Zip(
����!
aRows,

���!
bCols)

) � Transpose() � T ile(128, 16) $B
) � T ile(128, 16) $A

Exploration Strategy

41

Heuristics for Matrix Multiplication

For Macro Rules:
• Nesting depth

• Distance of addition and

multiplication

• Number of times rules are applied

For Map to OpenCL:
• Fixed parallelism mapping

• Limited choices for mapping to 

local and global memory

• Follows best practice

For Parameter Mapping:
• Amount of memory used

• Global
• Local
• Registers

• Amount of parallelism
• Work-items
• Workgroup

42

Exploration in Numbers for 
Matrix Multiplication

... ...

... ...

... ...

Algorithmic
Exploration
OpenCL speci c
Exploration
Parameter
Exploration

Code Generation

Phases:

Figure 8: Exploration and compilation strategy

Memory Coalescing In section 3 we introduced the reorder

primitive, which allows us to specify an index function to
reorder an array. It is important to point out, that this reorder-
ing is not performed in the generated code by producing a
reordered array. Instead, the index computation required to
perform the reordering is delayed until the next primitive
accesses the input array. This is similar to lazy evaluation.
Therefore, a reorder primitive e↵ectively controls how the fol-
lowing primitive will access its input array.

We can take advantage of this design by applying the
following rewrite rule:

map(f)! reorder(stride
�1

) � map(f) � reorder(stride)

This rule rewrites an arbitrary map primitive to access its
input array in a strided fashion, enabling memory coalescing.
To ensure correctness, the reordering has to be undone,
by reordering the computed array with the inverse index
function as used before. In situation where each thread
processes multiple data elements in f, this transformation
ensures that these elements are accessed in a coalesced way.

4.5 Summary
In this section, we discussed examples of rewrite rules and
how they are used to implement complex optimizations. Fur-
thermore, we have seen in figure 7 how these optimizations
are combined to transform a simple program into a more op-
timized and specialized form. We eventually reach a program
from which our compiler generates OpenCL code similar to
the highly optimized code shown in figure 2 in the motiva-
tion section. Because the rewrite rules are well-defined and
proven to be correct, we can automate their application and
explore di↵erent optimizations for a single program, as we
will discuss in the next section.

5. Exploration and Compilation Strategy
This section describes how we compile a single high-level
program, as seen in figure 4, to OpenCL code by applying
rewrite rules automatically to explore di↵erent optimization
choices. Figure 8 gives an overview of our exploration and
compilation strategy. For matrix multiplication, we start from
a single high-level program to generate 46,000 OpenCL ker-
nel in four phases, which we discuss in the following: algo-
rithmic exploration, OpenCL specific exploration, parameter
exploration, and code generation.

5.1 Algorithmic Exploration Using Macro Rules
By design, each rewrite rule encodes a simple transformation.
As discussed in the previous section, more complex optimiza-
tions are achieved by composition.

We decided to guide the automatic rewrite process by
grouping rewrite rules together into macro rules which encode
bigger transformations. A macro rule aims to achieve a
particular optimization goal, such as apply tiling or blocking.
These macro rules are more flexible than the simple rules.
They try to apply di↵erent sequences of rewrites to achieve
their optimization goal, whereas a simple rewrite rule always
performs exactly the same transformation. For example, it
might be required to first rewrite the source expression into a
form where the rewrites performing the actual optimization
(e. g., tiling) can be applied.

To explore di↵erent algorithmic optimization choices, we
encoded 4 macro rules: 1D blocking, 2D blocking, tiling,
and a tiling optimization applied to the innermost loop.
Starting from the high-level matrix multiplication program
in figure 5, we apply these macro rules at all valid locations
in an arbitrary order leading to approximately 20,000 di↵erent
variations.

In order to reduce the search space, we discard programs
which are unlikely to deliver good performance on the GPU
using two heuristics. The first heuristic limits the depth of
the nesting in the program: some rules are always applicable,
however they are unlikely to improve performance after ex-
ploiting all levels and dimensions of the OpenCL thread hier-
archy. Using the first heuristic we decided to focus on around
one hundred rewritten programs. The second heuristic looks
at the distance between the addition and multiplication op-
erations. A small distance increases the likelihood of fusing
these two instructions together and avoiding intermediate
results. The number of expressions after applying the second
heuristic is reduced to 8, which are then passed to the next
phase.

5.2 OpenCL Specific Exploration
For each algorithmically rewritten program, we explore dif-
ferent mapping strategies to the GPU. We chose a fixed map-
ping strategy for the OpenCL thread hierarchy: the two outer-
most map primitives are turned into mapWorkgroup primitives
to perform these computations across a two-dimensional
grid of workgroups. The next two maps are rewritten into
mapLocal primitives to exploit the parallelism inside of a two-
dimensional workgroup. Finally, all further nested map prim-
itives will be executed sequentially. This strategy is common
in GPU programming.

For the memory hierarchy, we explored the usage of
local and private memory. We limited the number of copies
into each memory space to two, to avoid expressions which
perform many meaningless copies.

Starting from the 8 algorithmically rewritten programs, we
automatically generate 760 OpenCL specific programs with
a particular mapping decision encoded.

5.3 Parameter Exploration
Every OpenCL specific program contains parameters, e. g.,
the argument to split(n) controlling the size of a tile or
a block. We performed an automatic exploration of these
parameters by exhaustively picking all possible parameter
values in a reasonable range. Furthermore, we make sure that
the parameters picked will not generate an OpenCL kernel
requiring too much private, local, or global memory. We also
discard parameter combinations leading to an unreasonably
small or high number of workgroups or local threads.

For the 760 OpenCL specific programs we generate around
46,000 fully specialized programs.

7 2016/1/19

43

Exploration Space for Matrix Multiplication

Fermi Kepler Tahiti

0

200

400

600

0

500

1000

1500

0

1000

2000

Th
ro

ug
hp

ut
 (G

Fl
op

/s
)

Only few OpenCL kernel with very good performance

44

Performance Evolution for Randomised Search

Even with a simple random search strategy one can expect to find 
a good performing kernel quickly

Performance Results Matrix Multiplication

Nvidia GeForce GTX 480 (Fermi)

0

250

500

750

10242 20482 40962 81922 163842

Th
ro

ug
hp

ut
 (G

flo
p/

s)

Generated MAGMA cuBLAS

Nvidia GeForce GTX TITAN Black (Kepler)

0

1000

2000

3000

4000

10242 20482 40962 81922 163842

Input Size

Generated MAGMA cuBLAS

AMD Radeon HD 7970 (Tahiti)

0

1000

2000

3000

10242 20482 40962 81922 163842

Generated clMAGMA clBLAS clBLAS Tuned

45

Performance close or better than hand-tuned MAGMA library

Fermi Kepler Tahiti

X X

X X

X X

X X

XX

XX

0

50

100

0

50

100

1024
2

2048
2

1K
 Fermi

2K 1K
 Kepler

2K 1K
 Tahiti

2K 1K
 Fermi

2K 1K
 Kepler

2K 1K
 Tahiti

2K 1K
 Fermi

2K 1K
 Kepler

2K 1K
 Tahiti

2K

The six specialized OpenCL kernels

R
el

at
ive

 p
er

fo
rm

an
ce

Executed w
ith input size

Executed on

46

Performance Portability Matrix Multiplication

Generated kernels are specialised for device and input size

Desktop GPUs vs. Mobile GPU

47

Performance portable even for mobile GPU device!

 1024x1024
* 1024x1024

0

500

1000

1500

2000

Rewrite−
 based

 CLBlast
+ CLTune

 1024x1024
* 1024x1024

0

500

1000

1500

2000

2500

3000

Rewrite−
 based

 CLBlast
+ CLTune

 1024x1024
* 1024x1024

0

2

4

6

8

10

12

14

Rewrite−
 based

 CLBlast
+ CLTune

Desktop GPUs Mobile GPU

Nvidia GeForce GTX Titan Black AMD Radeon HD 7970 ARM Mali-T628 MP6
G
FL

O
PS

48

The LIFT Team

Identify hidden parallelism in LIFT programs

Federico Pizzuti 
PhD Student 

University of Edinburgh

Automatic Parallelization via Matrix Multiplication

Shigeyuki Sato Hideya Iwasaki
The University of Electro-Communications, Tokyo, Japan

sato@ipl.cs.uec.ac.jp iwasaki@cs.uec.ac.jp

Abstract
Existing work that deals with parallelization of complicated reduc-
tions and scans focuses only on formalism and hardly dealt with
implementation. To bridge the gap between formalism and imple-
mentation, we have integrated parallelization via matrix multipli-
cation into compiler construction. Our framework can deal with
complicated loops that existing techniques in compilers cannot par-
allelize. Moreover, we have sophisticated our framework by devel-
oping two sets of techniques. One enhances its capability for paral-
lelization by extracting max-operators automatically, and the other
improves the performance of parallelized programs by eliminating
redundancy. We have also implemented our framework and tech-
niques as a parallelizer in a compiler. Experiments on examples
that existing compilers cannot parallelize have demonstrated the
scalability of programs parallelized by our implementation.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage]: Processors—Compilers, Optimization; D.1.2 [Program-
ming Techniques]: Automatic Programming

General Terms Experimentation, Languages, Design, Algorithms

Keywords automatic parallelization, loop, reduction, scan, matrix
multiplication, semiring, linear recurrence equation

1. Introduction
Since 2005, processor vendors have generally adopted multi-core
architectures instead of boosting the clock rate of processors. This
means that sequential programs cannot be made run faster with-
out parallelization. Thus, we cannot avoid parallel programming in
striving for higher performance. However, parallel programming is
a challenge for most programmers. The easiest way for program-
mers to make programs parallel is to use automatic parallelization.

The most commonly used methodology for automatic paral-
lelization of loops is doall parallelization [1, 2], whose core is to
guarantee the independence of each iteration, i.e., the parallelism
among iterations, by analyzing loop-carried data dependence. This
framework suffices for simple data parallelism, but does not suffice
for reduction, which is a generalization of summation.

Standard doall parallelizers can recognize simple reductions,
e.g., one that just computes the sum of an array:

x← 0; for i = 1 to n do x← x + a[i] done.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

This loop is equivalent to x← 0+
Pn

i=1 a[i]. As is well known, the
summation can be computed in parallel owing to the associativity
of the addition; the parallel summation is computed in O(n/p +
log p) time, where p is the number of threads. Although this loop
has a loop-carried data dependence with respect to x (i.e., writing x
after reading x over an iteration), its doall parallelization succeeds
because the definition and use of x are recognized as a reduction.

The summation is a trivial reduction. There are, however, more
unobvious and non-trivial reductions. For example, the following
loop evaluates a polynomial expression through the Horner scheme,
i.e.,

Pn
i=0 a[n − i]ci = a[n] + c(a[n − 1] + c(a[n − 2] + · · · +

c(a[1] + c(a[0] + c · 0)) · · ·)).

x← 0; for i = 0 to n do x← c · x + a[i] done.

Doall parallelizers cannot recognize this loop as a reduction. As a
result, this loop-carried data dependence with respect to x makes
its doall parallelization impossible. However, we can rewrite this
loop into

x← x0; for i = 0 to n do x← Ai × x done,

where x =

„
x
1

«
, x0 =

„
0
1

«
, Ai =

„
c a[i]
0 1

«
.

This loop is equivalent to x ←
`Qn

i=0 An−i

´
× x0. It is the same

as the summation except for changing the addition into the matrix
multiplication. Since the matrix multiplication is an associative
operation, we can also compute the product of matrices in O(n/p+
log p) time. Thus, this loop can be parallelized.

As shown above, if we can transform a loop body into a matrix
multiplication form, we can obtain an efficient parallel version
of its loop. This technique is known as a parallel algorithm for
solving linear recurrence equations [10]. There is work that applies
a generalization of this idea to automatic parallelization [6, 8,
13, 14, 21]. Although the formalism developed in such work is
promising for parallelizing complicated loops, no one connects the
formalism with the implementation aspect. We have resolved this
problem by integrating the formalism into doall parallelization.

Our work to bridge the gap between formalism and practical im-
plementation includes a solution to an important problem concern-
ing the max-operator, which plays a key role in parallelizing dy-
namic programming. In prior work on algebra-based parallelization
[13, 21], this operator is assumed to be given, even though in real-
istic programs the max-operation is usually described by means of
if-statements. We have developed a technique for extracting max-
operators automatically from if-statements.

Our work has resulted in the following important contributions.

• We have developed a novel framework for loop parallelization
(Sections 3 and 4). The formalization of a loop body by us-
ing matrix multiplication over a semiring enables paralleliza-
tion of various loops, especially one with a complicated body
that contains loop-carried data dependence and if-statements.
This parallelization is more powerful than the standard doall

470

Automatic Parallelization via Matrix Multiplication

Shigeyuki Sato Hideya Iwasaki
The University of Electro-Communications, Tokyo, Japan

sato@ipl.cs.uec.ac.jp iwasaki@cs.uec.ac.jp

Abstract
Existing work that deals with parallelization of complicated reduc-
tions and scans focuses only on formalism and hardly dealt with
implementation. To bridge the gap between formalism and imple-
mentation, we have integrated parallelization via matrix multipli-
cation into compiler construction. Our framework can deal with
complicated loops that existing techniques in compilers cannot par-
allelize. Moreover, we have sophisticated our framework by devel-
oping two sets of techniques. One enhances its capability for paral-
lelization by extracting max-operators automatically, and the other
improves the performance of parallelized programs by eliminating
redundancy. We have also implemented our framework and tech-
niques as a parallelizer in a compiler. Experiments on examples
that existing compilers cannot parallelize have demonstrated the
scalability of programs parallelized by our implementation.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage]: Processors—Compilers, Optimization; D.1.2 [Program-
ming Techniques]: Automatic Programming

General Terms Experimentation, Languages, Design, Algorithms

Keywords automatic parallelization, loop, reduction, scan, matrix
multiplication, semiring, linear recurrence equation

1. Introduction
Since 2005, processor vendors have generally adopted multi-core
architectures instead of boosting the clock rate of processors. This
means that sequential programs cannot be made run faster with-
out parallelization. Thus, we cannot avoid parallel programming in
striving for higher performance. However, parallel programming is
a challenge for most programmers. The easiest way for program-
mers to make programs parallel is to use automatic parallelization.

The most commonly used methodology for automatic paral-
lelization of loops is doall parallelization [1, 2], whose core is to
guarantee the independence of each iteration, i.e., the parallelism
among iterations, by analyzing loop-carried data dependence. This
framework suffices for simple data parallelism, but does not suffice
for reduction, which is a generalization of summation.

Standard doall parallelizers can recognize simple reductions,
e.g., one that just computes the sum of an array:

x← 0; for i = 1 to n do x← x + a[i] done.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

This loop is equivalent to x← 0+
Pn

i=1 a[i]. As is well known, the
summation can be computed in parallel owing to the associativity
of the addition; the parallel summation is computed in O(n/p +
log p) time, where p is the number of threads. Although this loop
has a loop-carried data dependence with respect to x (i.e., writing x
after reading x over an iteration), its doall parallelization succeeds
because the definition and use of x are recognized as a reduction.

The summation is a trivial reduction. There are, however, more
unobvious and non-trivial reductions. For example, the following
loop evaluates a polynomial expression through the Horner scheme,
i.e.,

Pn
i=0 a[n − i]ci = a[n] + c(a[n − 1] + c(a[n − 2] + · · · +

c(a[1] + c(a[0] + c · 0)) · · ·)).

x← 0; for i = 0 to n do x← c · x + a[i] done.

Doall parallelizers cannot recognize this loop as a reduction. As a
result, this loop-carried data dependence with respect to x makes
its doall parallelization impossible. However, we can rewrite this
loop into

x← x0; for i = 0 to n do x← Ai × x done,

where x =

„
x
1

«
, x0 =

„
0
1

«
, Ai =

„
c a[i]
0 1

«
.

This loop is equivalent to x ←
`Qn

i=0 An−i

´
× x0. It is the same

as the summation except for changing the addition into the matrix
multiplication. Since the matrix multiplication is an associative
operation, we can also compute the product of matrices in O(n/p+
log p) time. Thus, this loop can be parallelized.

As shown above, if we can transform a loop body into a matrix
multiplication form, we can obtain an efficient parallel version
of its loop. This technique is known as a parallel algorithm for
solving linear recurrence equations [10]. There is work that applies
a generalization of this idea to automatic parallelization [6, 8,
13, 14, 21]. Although the formalism developed in such work is
promising for parallelizing complicated loops, no one connects the
formalism with the implementation aspect. We have resolved this
problem by integrating the formalism into doall parallelization.

Our work to bridge the gap between formalism and practical im-
plementation includes a solution to an important problem concern-
ing the max-operator, which plays a key role in parallelizing dy-
namic programming. In prior work on algebra-based parallelization
[13, 21], this operator is assumed to be given, even though in real-
istic programs the max-operation is usually described by means of
if-statements. We have developed a technique for extracting max-
operators automatically from if-statements.

Our work has resulted in the following important contributions.

• We have developed a novel framework for loop parallelization
(Sections 3 and 4). The formalization of a loop body by us-
ing matrix multiplication over a semiring enables paralleliza-
tion of various loops, especially one with a complicated body
that contains loop-carried data dependence and if-statements.
This parallelization is more powerful than the standard doall

470

Parallelising non-associative reductions

Key idea: Rearrange data as
matrices to exploit associative

matrix multiplication

Graph Algorithms via Sparse Linear Algebra in LIFT

Adam Harries 
PhD Student 

University of Edinburgh

soaGlbPar soaWrgLcl

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

bc
ss

tm
25

G
65

G
57

G
48

G
32

di
ag

ai
rfo

il1
_d

ua
l

G
11

ex
am

pl
em

m
ai

rfo
il1

Tr
ef

et
he

n_
20

b
Tr

ef
et

he
n_

20
Tr

ef
et

he
n_

50
0

Tr
ef

et
he

n_
20

00
Tr

ef
et

he
n_

20
0

Tr
ef

et
he

n_
20

0b
Tr

ef
et

he
n_

30
0

11
38

_b
us

Tr
ef

et
he

n_
70

0
lu

ng
1

G
60

G
55

DK
01

R
G

43
G

14
G

51 G
1

bc
ss

tm
25

G
65

G
57

G
48

G
32

di
ag

ai
rfo

il1
_d

ua
l

G
11

ex
am

pl
em

m
ai

rfo
il1

Tr
ef

et
he

n_
20

b
Tr

ef
et

he
n_

20
Tr

ef
et

he
n_

50
0

Tr
ef

et
he

n_
20

00
Tr

ef
et

he
n_

20
0

Tr
ef

et
he

n_
20

0b
Tr

ef
et

he
n_

30
0

11
38

_b
us

Tr
ef

et
he

n_
70

0
lu

ng
1

G
60

G
55

DK
01

R
G

43
G

14
G

51 G
1

Matrix, sorted by variance of the number of elements per row

Pe
rfo

rm
an

ce
, c

om
pa

re
d

to
 c

lS
PA

R
SE

Figure 8: The performance distributions of two kernels, soaGlbPar and soaWrgLcl, showing how each kernel performs best on matrices with different
variances. The dotted lines are a smoothed average done with local polynomial regression fitting.

Evaluation platform We measured performance on a single ma-
chine, running Scientific Linux 7.1 and equipped with a 32 core
Intel Xeon E5-2640 CPU and 64GB main memory. Our machine
is equipped with a NVIDIA K40m GPU, with OpenCL version 1.2
and CUDA 7.5.9.

Statistical analysis We refer to a combination of an individual
kernel, a single matrix, and a single global and single local size
as a configuration. For each configuration evaluated, we report the
average of at least 30 measurements to minimize the influence of
noise.

We focus our measurement on the kernel execution time, ex-
cluding any data transfer or host overhead, using the profiling API
provided by OpenCL.

Comparing to clSPARSE We compared our results to the open-
source sparse linear algebra toolkit clSPARSE framework [1]
which is developed by AMD and Vratis Ltd. We selected clSPARSE
for comparison for a number of reasons: firstly, as it is open source,
we were able to examine the source kernels and execution infras-
tructure, allowing us to investigate the optimisation techniques ap-
plied. Secondly, unlike many other sparse linear algebra toolkits,
clSPARSE is written using the OpenCL programming language,
allowing for a fair comparison, while a comparison to, e. g. cuS-
PARSE which is implemented in CUDA, may be influenced by the
chosen implementation language.

5.2 Tuning kernels for irregularity
Figure 8 shows how two of our automatically generated kernels
have different performance characteristics depending on the irreg-
ularity of the input matrices. In this figure, we compare the per-
formance of two generated kernels, soaGlbPar and soaWrgLcl,
across a set of matrices ordered by the variance in elements per
row, from low variance on the left to high variance on the right.
The kernel soaGlbPar performs a sequential dot product over each
row and only exploits parallelism across rows, while the kernel
soaWrgLcl performs a dot product, with a parallel map but a se-
quential reduction for each row. We can clearly observe from the
figure that the first kernel is beneficial for matrices with low vari-
ance of the number of elements per row, where the second ker-

nel performs best for a higher, but not too high, level of variance.
For example, the kernel soaGlbPar clearly performs best on ker-
nels with a very low level of irregularity (e.g. the bcsstm25 ma-
trix), while the kernel soaWrgLcl performs best on matrices with
a medium degree of irregularity (e.g. the Trefethen 200 matrix).

5.3 Performance comparison against clSPARSE
Figure 9 shows the performance of our best automatically gener-
ated kernel selected for each input matrix compared to the perfor-
mance of the manually tuned clSPARSE. Different selected kernels
are shown in different colors.

Overall, the performance of our generated kernels is mixed: in
some cases on particular – mostly regular – matrices, we are able
to reach a speedup of up to 1.8x compared to clSPARSE. For the
majority of the more regular matrices shown in the left half of the
plot we are either on par, or faster than clSPARSE. Here mostly the
same kernel is selected, but there exists interesting outliers, e.g. for
the Trefethen 20000 matrix, where a different kernel shows very
good performance.

For the more irregular matrices on the right side the perfor-
mance is significantly worse. Although we show that different ker-
nels show the highest performance for different input matrices, the
best generated kernels for these irregular matrices are still lower
performing than clSPARSE.

Figure 9 illustrates this trend very clearly: there is a clear corre-
spondence between the performance of the generated kernels, and
the variance of the processed matrices.

5.4 Limitations
Overall, there appears to be good evidence to suggest that our
compiler-based and compositional approach is sound and promis-
ing. However, as this is work-in-progress there exist a number of
limitations with our current implementation which are especially
relevant for sparse and irregular problems.

The first limitation is the lack of ragged arrays within our frame-
work. This limits the size of matrices we can process, as we cur-
rently allocate the same amount of storage for each row, which
is based on the size of largest row. This is especially a problem

6 2015/11/27

Differently 
optimised kernels 
for different inputs

Naums Mogers 
PhD Student 

University of Edinburgh

Optimising Deep Learning with LIFT

FPGAs Low Power Devices

TPU

Express layers with LIFT primitives

Optimise individual layers and across layers via rewrites

3.2 the skelcl programming model 43

Figure 3.5: Visualization of the Gaussian blur stencil application.

into account. When neighboring elements are accesses at the bound-
aries of the container out-of-bound accesses occur. In these cases the
function h is called with the index causing the out-of-bound access
and returns a replacement value. We now formally define the stencil
skeleton. We start with the definition for vectors:

definition 3.7. Let ~x be a vector of size n with elements xi where 0 < i 6
n. Let f be an unary customizing function, d be a positive integer value, and
h be an out-of-bound handling function. The algorithmic skeleton stencil is
defined as follows:

stencil f d h [x1, x2, . . . , xn]
def
= [y1,y2, . . . ,yn]

where

yi = f [xi-d, . . . , xi+d] 8 i : 0 < i 6 n

and
xj = h j 8 j : -d < j 6 0 _n < j 6 n+ d.

The definition for matrices is similar:

definition 3.8. Let M be an n⇥m matrix with elements mi,j where 0 <

i 6 n and 0 < j 6 m. Let f be an unary customizing function, d be
an positive integer value, and h be an out-of-bound handling function. The
algorithmic skeleton stencil is defined as follows:

stencil f d h

2

64
m1,1 · · · m1,m...

...
mn,1 · · · mn,m

3

75
def
=

2

64
n1,1 · · · n1,m...

...
nn,1 · · · nn,m

3

75

where

ni,j = f

2

64
mi-d,j-d · · · mi-d,j+d...

...
mi+d,j-d · · · mi+d,j+d

3

75 8 i, j
0 < i 6 n,
0 < j 6 m

and

Bastian Hagedorn 
PhD Student 

University of Münster

Stencil Computations in LIFT

Larisa Stoltzfus 
PhD Student 

University of Edinburgh

Video

Image Processing

Acoustics Simulation

26 expressing stencil computations using high-level functional primitives

[a b c]
[d e f]
[g h i]

(map(
 map(transpose) ∘
 slide 2 1 ∘
 transpose) ∘
 slide 2 1)

[g h i]
[d e f]

[a b c]
[d e f]

map(
 map(transpose) ∘
 slide 2 1 ∘
 transpose)

[a b c]
[d e f]

(map(transpose) ∘
 slide 2 1 ∘
 transpose)

[a d]
[b e]
[c f]

(map(transpose) ∘
 slide 2 1)

[c f]
[b e]

[a d]
[b e]map(transpose) [a d]

[b e]transpose

[a b]
[c d]
[c d]
[g h]

[b c]
[e f]
[e f]
[h i]

Figure 7: Using slide to create neighborhoods for a 2⇥ 2 4-point stencil

To increase readability, we define a function pad2d which we use in
the following examples.
definition 2 .15: Let xs be an array of size m whose elements are arrays
of size n. Let top, bottom, left, right be positive integer values and b1

and b2 two boundary functions. The pad2d function is then defined as:

pad2d top bottom left right b1 b2
def
=

transpose � pad left right b2 �
transpose � pad top bottom b1

If top = bottom, left = right and b1 = b2, we also write

pad2d top left b1 xs

instead of

pad2d top top left left b1 b1 xs

Note that pad2d is a defined function composed of primitives which
allows us to avoid repetition instead of being a specialized built-in
primitive for higher dimensional data structures.

2.3.2 Creating Two Dimensional Neighborhoods Using Slide

In this section, we explain how we create two dimensional neighbor-
hoods using our high-level primitives. The creation of two dimen-
sional neighborhoods in a matrix is depicted in Figure 7. We start
in the top left corner. Similar to pad, the slide primitive works with
elements of its input array independent of their type. Since these ele-
ments are now arrays itself, slide creates windows of rows as depicted

Express Stencil with Skeletons

Explore optimisations as rewrites

http://www.ness.music.ed.ac.uk/archives/systems/virtual-room-acoustics

Performance Modeling of LIFT Programs

numGroups

1

≥ 384 < 384

totalLocalStores

2

≥ 807927808 < 807927808

groupSize

3

< 48 ≥ 48

Node 4
(n = 86137)

0
10

00
20

00
30

00

totalLocalStores

5

≥ 1325400064< 1325400064

Node 6
(n = 42065)

0
10

00
20

00
30

00

Node 7
(n = 24224)

0
10

00
20

00
30

00

numGroups

8

≥ 1536 < 1536

numGroups

9

≥ 3072 < 3072

Node 10
(n = 35944)

0
10

00
20

00
30

00

Node 11
(n = 24124)

0
10

00
20

00
30

00

totalThreads

12

< 24576 ≥ 24576

Node 13
(n = 13682)

0
10

00
20

00
30

00

globalLoads

14

< 7168 ≥ 7168

Node 15
(n = 15743)

0
10

00
20

00
30

00

coalescedGlobalStores

16

< 12 ≥ 12

Node 17
(n = 9602)

0
10

00
20

00
30

00

Node 18
(n = 19691)

0
10

00
20

00
30

00

localStores

19

≥ 20512< 20512

Node 20
(n = 9832)

0
10

00
20

00
30

00

localMemory

21

≥ 12320 < 12320

Node 22
(n = 14166)

0
10

00
20

00
30

00

globalStores

23

≥ 96 < 96

Node 24
(n = 1181)

0
10

00
20

00
30

00

Node 25
(n = 26516)

0
10

00
20

00
30

00

Performance Model

Toomas Remmelg 
PhD Student 

University of Edinburgh

used twice to tile both matrices in the last two lines. Line
11 combines a row of tiles of matrix A with a column of
tiles of matrix B using the zip primitive. Lines 9 and 10 copy
individual tiles into local memory. The computation of dot-
product remains unchanged (line 8) and is nested in two map

primitives, now operating on pairs of tiles instead on entire
matrices. To compute matrix multiplication in a tiled fashion,
we have to add up the intermediate results computed by
multiplying the pairs of tiles. This is done using the reduce

primitive introduced in line 4 combined with the + operation
used in line 5 to add up two tiles. Finally, the computed results
are copied back into global memory in line 3.

This complex transformation is achieved by applying sim-
ple rewrite rules like the ones presented earlier in this section.
As each of these simple rules is provably correct, by compo-
sition the bigger transformations are automatically valid as
well. This is a major advantage compared to traditional com-
piler techniques, where complex analysis is required to apply
such big optimization steps.

4.3 Register Blocking
Register blocking is another traditional optimization tech-
nique [14]. The idea is to swap nested loops such that a data
item is loaded into a register and during the execution of the
inner loop, this item is reused while iterating over a block of
data from the other matrix. Figure 6b shows register block-
ing for matrix multiplication. Here each element of the high-
lighted column of B is reused while iterating over a single
column of the highlighted block of A.

We represent this optimization by swapping nested map

primitives as shown in the third expression in figure 7. We
start by spliting tileA on line 14 to form multiple blocks of
rows. For combining multiple rows of tileA with a single
column of tileB we transpose the resulting blocks of rows of
A (aBlocks) before using zip on line 12. Then we apply map (line
9) to obtain a pair of elements of tileA (aBlock) together with
a single element of tileB (b). We copy b into private memory
(bp) and reuse it on line 10 while iterating over aBlock using
the map primitive.

4.4 General Optimizations
Numerous rewrite rules encoding small and generic opti-
mizations exist in our system. These rules are applied to
simplify the expression, to avoid unnecessary intermediate
results, vectorize functions, or to ensure memory coalescing
when accessing global GPU memory. We discuss a few exam-
ples in this section.

Simplification Rules Earlier we already saw a fusion rule
combining two map primitives. A similar rule to fuse a
combination of map and reduceSeq also exists:

reduceSeq(f, id) � map(g)! reduceSeq(�(acc, x) . f(acc, g(x)), id)

This rule avoids an intermediate array produced by the map

(g) primitive, as the function g is applied to all elements of
the input array inside the reduction immediately before the
element is combined with the reduction operator f.

Vectorization The following rule is applied to make use of
the vector units in the hardware. It rewrites a map primitive
into a vectorized version:

map(f)! toScalar � map(vectorize(f)) � toVector(n)

For example, this rule can be applied to vectorize copying of
a tile into local memory which is a technique advocated by
AMD in their example OpenCL codes [1].

Naı̈ve matrix multiplication

1 map(� arow .

2 map(� bcol .

3 reduce(+, 0) � map(⇥) � zip(arow, bcol)

4 , transpose(B))

5 , A)

Apply tiling rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .
3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .
5 map(map(+)) � zip(tileAcc) �
6 map(� as .

7 map(� bs .

8 reduce(+, 0) � map(⇥) � zip(as, bs)

9 , toLocal(copy2D(tileB)))
10 , toLocal(copy2D(tileA)))
11 ,0, zip(rowOfTilesA, colOfTilesB))
12) � tile(m, k, transpose(B))

13) � tile(n, k, A)

Apply blocking rules

1 untile � map(� rowOfTilesA .

2 map(� colOfTilesB .

3 toGlobal(copy2D) �
4 reduce(� (tileAcc, (tileA, tileB)) .

5 map(map(+)) � zip(tileAcc) �
6 map(� aBlocks .

7 map(� bs .

8 reduce(+, 0) �
9 map(� (aBlock, b) .

10 map(� (a,bp) . a ⇥ bp
11 , zip(aBlock, toPrivate(id(b))))
12) � zip(transpose(aBlocks), bs)

13 , toLocal(copy2D(tileB)))

14 , split(l, toLocal(copy2D(tileA))))

15 ,0, zip(rowOfTilesA, colOfTilesB))

16) � tile(m, k, transpose(B))

17) � tile(n, k, A)

...

Apply general
optimization rules

Code generation

Fast OpenCL code shown in figure 2.

Figure 7: Transforming matrix multiplication by combining
optimizations.

6 2016/1/19

…

Extract Features

Predictions 
used to drive the 
rewrite process

54

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:21

6.3 Translating Dot-product to OpenCL
We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 8192 zs2)) zs1)

(split 8192 (zip (asVector4 xs) (asVector4 ys))))))

�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.

parforWorkgroup (N /8192) (joinAcc (N /8192) 64 (asScalarAcc4 (N /128) out)) (� �id o.
parforLocal 64 o (� lid o.
newPrivate numh4i accum.

accum.1 := 0;
for 2048 (� i .
accum.1 := accum.2 +

(fst (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)) ⇤
(snd (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)));

out := accum.2))

We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs,

2 const global float *restrict ys, int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4)(0.0, 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:21

6.3 Translating Dot-product to OpenCL
We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 8192 zs2)) zs1)

(split 8192 (zip (asVector4 xs) (asVector4 ys))))))

�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.

parforWorkgroup (N /8192) (joinAcc (N /8192) 64 (asScalarAcc4 (N /128) out)) (� �id o.
parforLocal 64 o (� lid o.
newPrivate numh4i accum.

accum.1 := 0;
for 2048 (� i .
accum.1 := accum.2 +

(fst (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)) ⇤
(snd (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)));

out := accum.2))

We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs,

2 const global float *restrict ys, int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4)(0.0, 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:21

6.3 Translating Dot-product to OpenCL
We pick up the dot product example (2) given in Section 2 to show how a mild variation which makes use of the
OpenCL-speci�c primitives is translated to real OpenCL.�e example shown here uses themapWorkgroup
and mapLocal primitives together with the vectorisation primitives asVector and asScalar.
asScalar4 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 8192 zs2)) zs1)

(split 8192 (zip (asVector4 xs) (asVector4 ys))))))

�is is the code used in the experimental evaluation (Section 7) and shows excellent performance on an Intel
CPUs compared to the reference MKL implementation. Vectorisation is crucial on Intel CPUs for achieving high
performance.
�is purely functional program with OpenCL-speci�c primitives is translated to the following imperative

program. �e translation largely follows the steps explained in Section 4 extended to cover the OpenCL-speci�c
primitives, as explained above.

parforWorkgroup (N /8192) (joinAcc (N /8192) 64 (asScalarAcc4 (N /128) out)) (� �id o.
parforLocal 64 o (� lid o.
newPrivate numh4i accum.

accum.1 := 0;
for 2048 (� i .
accum.1 := accum.2 +

(fst (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)) ⇤
(snd (idx (idx (split 2048 (idx (split (8192 ⇤ 4) (zip (asVector4 xs) (asVector4 �s))) �id)) lid) i)));

out := accum.2))

We generate the following OpenCL kernel where each line corresponds to a line of the imperative DPIA program.

1 kernel void KERNEL(global float *out , const global float *restrict xs,

2 const global float *restrict ys , int N) {

3 for (int g_id = get_group_id (0); g_id < N / 8192; g_id += get_num_groups (0)) {

4 for (int l_id = get_local_id (0); l_id < 64; l_id += get_local_size (0)) {

5 float4 accum;

6 accum = (float4)(0.0, 0.0, 0.0, 0.0);

7 for (int i = 0; i < 2048; i += 1) {

8 accum = (accum +

9 (vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), xs) *

10 vload4 (((2048 * l_id) + (8192 * 4 * g_id) + i), ys))); }

11 vstore4(accum , ((64 * g_id) + l_id), out); } } }

�e parforWorkgroup and parforLocal primitives have been translated into for loops in line 3 and 4 which
use the OpenCL functions get group id and get local id for distributing iterations across parallel executing
work-groups and work-items. Loading elements as vector data types from the float arrays xs and ys requires
using the OpenCL provided function vload4 in lines 9 and 10. Similarly, storing the computed value with vector
data type in the output array uses the vstore4 function in line 11.

6.4 Memory allocation in Data Parallel Idealised Algol for OpenCL
Our translation from functional to imperative programs leaves us with programs which perform statically
bounded memory allocation. �e lifetime of every memory allocation is known because it is bounded by the
scope of the new primitive. Nevertheless, the memory allocation occurs dynamically as part of the execution of
the program. In C these allocations can be performed with malloc on the heap or alloca on the stack. However,
OpenCL does not support dynamic memory allocation. Furthermore, OpenCL demands that all temporary bu�ers
in global and local memory – even with statically known size – have to be allocated prior to the kernel execution

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Compiling Parallel Functional CodewithData Parallel Idealised Algol • 1:3

2.1 Expressing Parallelisation Strategies in Functional Code
Here is an expression that describes the dot product of two vectors xs and ys:

reduce (+) 0 (map (�x . fst x ⇤ snd x) (zip xs ys)) (1)

�is expression can be read in two ways. Firstly, read mathematically, it is a declarative speci�cation of the
dot product. Secondly, it can be read as a strategy for computing dot products. Reading right-to-le�, we have a
pipeline arrangement. Let us make the following assumptions: i) zip is not materialised (it only a�ects how later
parts of the pipeline read their input); ii) map is executed in parallel across the array; and iii) reduce is executed
sequentially. �en we can read this expression as embodying a naive “parallel map, sequential reduce” strategy.

Such a naive strategy is not always best. If we try to execute one parallel job per element of the input arrays,
then depending on the underlying architecture we will either fail (e.g., on GPUs with a �xed number of execution
units), or generate so many threads that coordination of them will dominate the runtime (e.g., on CPUs). �e
overall strategy of “parallel, then sequential” is likely not the most e�cient, either.

We can give a more re�ned strategy given information about the underlying architecture. For instance, GPUs
support nesting of parallelism by organising threads into groups, or work-items into work-groups, using OpenCL
terminology. If we know that the input is of size n ⇥ 128 ⇥ 2048, we can explicitly control how parallelism can
be mapped to the GPU hierarchy. �e following expression distributes the work among n groups of 128 local
threads, each processing 2048 elements in one go, by directly reducing over the multiplied pairs of elements:

reduce (+) 0 (join (mapWorkgroup (�zs1.mapLocal (�zs2. reduce (�x a. (fst x ⇤ snd x) + a) 0 (split 2048 zs2)) zs1)
(split (2048 ⇤ 128) (zip xs ys)))))

(2)
Although this expression gives much more information about how to process the computation on the GPU, we
have not le� the functional paradigm, so we still have access to the straightforward mathematical reading of
this expression. We can use equational reasoning to prove that this is semantically equivalent to (1). Equational
reasoning can also be used to generate (2) from (1). Indeed Steuwer et al. (2015) have shown that stochastic search
techniques are e�ective at automatically discovering parallelisation strategies that match hand-coded ones.
However, even with a speci�ed parallelisation strategy we cannot execute this code directly. We need to

translate the functional code to an imperative language like OpenCL or CUDA in a way that preserves our chosen
strategy. �is paper presents a formal approach to solving this translation problem.

2.2 Strategy Preserving Translation to Imperative Code
What is the simplest way of converting a functional program to an imperative one? Starting with our zip-map-
reduce formulation of dot-product (1), we can turn it into an imperative program simply by assigning its result to
an output variable out:

out := reduce (+) 0 (map (�x . fst x ⇤ snd x) (zip xs ys))

Unfortunately, this is not suitable for compilation targets like OpenCL or CUDA. While assignment statements
are the bread-and-bu�er of such languages, their expression languages certainly do not include such modern
amenities as higher ordermap and reduce functions. To translate these away, we introduce a novel acceptor-
passing translationALEM� (out). �e key idea is that for any expression E producing data of type � , the translation
ALEM� (out) is an imperative program that has the same e�ect as the assignment out := E and is free from
higher-order combinators. �is translation is mutually de�ned with a continuation passing translation CLEM� (C)
that takes a parameterised command C that will consume the output, instead of taking an output variable.
�e de�nition of the translation is given in Section 4.1. We introduce it here by example. Applied to our

dot-product code, our translation �rst replaces the reduce by a corresponding imperative combinator reduceI.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Fu
nc

tio
na

l
Im

pe
ra

tiv
e

Data Parallel Idealised Algol as new foundation for LIFT

• So far LIFT rewrites only functional expressions

• Data Parallel Idealised Algol (DPIA) combines 
functional and imperative constructs

• Allows formal translation of functional programs 
into efficient parallel imperative programs

• Types separate expressions, acceptors, and commands:

• Expressions are purely functional computations

• Acceptors describe modifiable locations in memory 
(≅ l-values in C)

• Commands are imperative actions modifying memory

Collaboration with Bob Atkey (Strathclyde) and Sam Lindley (Edinburgh)

Draft Paper at: https://bentnib.org/dpia.html

https://bentnib.org/dpia.html

LIFT is Open-Source Software

http:!//!!www.lift-project.org/

https:!//github.com/lift-project/lift

55

http://www.lift-project.org
https://github.com/lift-project/lift
http://www.lift-project.org

The LIFT Project
Performance Portable Parallel Code Generation via Rewrite Rules

#UofGWorldChangers
@UofGlasgow

Michel Steuwer — michel.steuwer@glasgow.ac.uk

www.lift-project.org @LIFTlang

mailto:michel.steuwer@glasgow.ac.uk
http://www.lift-project.org
https://twitter.com/Liftlang

